Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T05:47:59.573Z Has data issue: false hasContentIssue false

Effect of multiple copies of rpoBC on the rate of RNA synthesis in Escherichia coli

Published online by Cambridge University Press:  14 April 2009

Elena C. Guzman
Affiliation:
Departamento de Genética, Universidad de Extremadura, 06071 Badajoz, Spain
Alfonso Jimenez-Sanchez
Affiliation:
Departamento de Genética, Universidad de Extremadura, 06071 Badajoz, Spain
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cloning of the rpoB and rpoC genes in a high copy number vector in E. coli increased the amount of the encoded gene products, the β and β′ subunits of RNA polymerase. However, this unexpectedly caused a 30–50% decrease in RNA synthetic activity which alternatively induced a reduction of growth rate and enlargement of cell size, and decreased the DNA replication time. The results can be explained by autogenous regulation of the RNA polymerase genes by the ββ′ subunits. A relation between the decrease in number of transcription units and the observed higher rate of movement of DNA replication forks is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

Bachman, B. J. (1983). Linkage map of Escherichia coli K-12, Edition 7. Microbiological Reviews 47, 180230.CrossRefGoogle Scholar
Barry, G., Squires, C. & Squires, C. L. (1979). Control features within rplJL-rpoBC transcription unit of Escherichia coli. Proceedings of the National Academy of Sciences U.S.A. 76, 49224926.Google Scholar
Barry, G., Squires, C. & Squires, C. L. (1980). Attenuation and processing of RNA from rplJL-rpoBC transcription unit of Escherichia coli. Proceedings of the National Academy of Sciences U.S.A. 77, 33313335.Google Scholar
Blumenthal, R. M. & Dennis, P. P. (1980). Regulation of ribonucleic acid polymerase synthesis during restriction of an Escherichia coli mutant temperature sensitive for transcription factor sigma. Journal of Bacteriology 142, 10491054.CrossRefGoogle ScholarPubMed
Fiil, N. P., Bendiak, D., Collins, J. & Friesen, J. D. (1979). Expression of Escherichia coli ribosomal protein and RNA polymerase genes cloned on plasmids. Molecular and General Genetics 173, 3950.CrossRefGoogle ScholarPubMed
Hayward, R. S. & Fyfe, S. K. (1978 a). Over-synthess and instability of sigma protein in a merodiploid strain of Escherichia coli. Molecular and General Genetics 159, 8999.Google Scholar
Hayward, R. S. & Fyfe, S. K. (1978 b). Non-coordinate expression of the neighboring genes rplL and ropBC of Escherichia coli. Molecular and General Genetics 160, 7780.CrossRefGoogle ScholarPubMed
Ishihama, A. & Fukuda, R. (1980). Autogenous and posttranscriptional regulation of RNA polymerase synthesis. Molecular and Cellular Biochemistry 31, 177196.Google Scholar
Iwakura, Y., Ito, K. & Ishihama, A. (1974). Biosynthesis of RNA polymerase in Escherichia coli. I. Control of RNA polymerase content at various growth rates. Molecular and General Genetics 133, 123.CrossRefGoogle ScholarPubMed
Kajitani, M., Fukuda, R. & Ishihama, A. (1980). Autogenous and posttranscriptional regulation of Escherichia coli RNA polymerase synthesis in vitro. Molecular and General Genetics 179, 489496.CrossRefGoogle ScholarPubMed
Kajitani, M. & Ishihama, A. (1984). Promoter selectivity of Escherichia coli RNA polymerase. Differential stringent control of the multiple promoters from ribosomal RNA and protein operons. Journal of Biological Chemistry 259, 19511957.CrossRefGoogle ScholarPubMed
Lang-Yang, H. & Zubay, G. (1981). Negative regulation of β and β′ synthesis by RNA polymerase. Molecular and General Genetics 183, 514517.CrossRefGoogle ScholarPubMed
Little, R. & Dennis, P. P. (1979). Expression of RNA polymerase and ribosome component genes in Escherichia coli mutants having conditionally defective RNA polymerase. Journal of Bacteriology 137, 115123.CrossRefGoogle Scholar
Little, R., Fiil, N. P. & Dennis, P. P. (1981). Transcriptional and post-transcriptional control of ribosomal protein and ribonucleic acid polymerase genes. Journal of Bacteriology 147, 45–35.CrossRefGoogle ScholarPubMed
Maher, D. L. & Dennis, P. P. (1977). In vivo transcription of E. coli genes for rRNA, ribosomal proteins and subunits of RNA polymerase: Influence of the stringent control system. Molecular and General Genetics 155, 203211.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1980). Molecular Cloning. Cold Spring Harbor, pp. 249251.Google Scholar
Newman, A. & Hayward, R. S. (1980). Cloning of DNA of the rpoBC operon from the chromosome of Escherichia coli K-12. Molecular and General Genetics 177, 527533.CrossRefGoogle Scholar
Pato, M. L. (1975). Alterations of the rate of movement of deoxyribonucleic acid replication forks. Journal of Bacteriology 123, 272277.Google Scholar
Pritchard, R. H. & Zaritsky, A. (1970). Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli. Nature 226, 126131.CrossRefGoogle Scholar
Ralling, G., Bodrug, S. & Linn, T. (1985). Growth ratedependent regulation of RNA polymerase synthesis in Escherichia coli. Molecular and General Genetics 201, 379386.CrossRefGoogle ScholarPubMed
Ralling, G. & Linn, T. (1984). Relative activities of the transcriptional regulatory sites in the rplKAJLrpoBC gene cluster of Escherichia coli. Journal of Bacteriology 158, 279285.CrossRefGoogle ScholarPubMed
Yura, T. & Ishihama, A. (1979). Genetics of bacterial RNA polymerases. Annual Review of Genetics 13, 5997.Google Scholar