Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T00:09:38.285Z Has data issue: false hasContentIssue false

Dynamics of gametic disequilibria between loci linked to chromosome inversions: the recombination-redistributing effect of inversions

Published online by Cambridge University Press:  14 April 2009

Arcadio Navarro*
Affiliation:
Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
Esther Betrán
Affiliation:
Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
Carlos Zapata
Affiliation:
Departamento de Biologia Fundamental, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
Alfredo Ruiz
Affiliation:
Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
*
* Arcadio Navarro, Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain. Phone: (3)581-2729. Fax: (3)581-2387. E-Mail: [email protected]
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The total gametic disequilibrium between two loci linked to polymorphic inversions can be partitioned into two types of components: within and between chromosome arrangements. The within components depend on the gametic disequilibrium within each chromosome arrangement. The between components depend on the locus-inversion disequilibria. This partitioning has practical applications and is indispensable for studying the dynamics of these systems because inversions greatly reduce recombination in the heterokaryotypes while allowing free, and sometimes different, recombination in each of the homokaryotypes. We provide equations for the per generation change of the various disequilibria for systems with two and three chromosome arrangements, and the general recursive equations predicting the disequilibria after any number of generations for the case of two arrangements. Simulation studies were carried out using different values of the recombination parameters and all possible initial conditions. The results show a complex convergence to linkage equilibrium in inversion systems. The various disequilibria can have local maxima and minima while approaching equilibrium and, moreover, their dynamics cannot be described, in general, using a single parameter, i.e. an effective recombination rate. We conclude that the effects of inversions on gametic disequilibria must be carefully considered when dealing with disequilibriain inversion systems. The formulae provided in this paper can be used for such purpose.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Bennet, J. H., (1954). On the theory of random mating. Annual of Eugenetics 18, 311317.Google Scholar
Betrán, E., Quezada-Diaz, J. E., Ruiz, A., Santos, M., & Fontdevila, A., (1995). The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations. Heredity 74, 188199.CrossRefGoogle ScholarPubMed
Charlesworth, B., (1974). Inversion polymorphism in a twolocus genetic system. Genetical Research 23, 259280.CrossRefGoogle Scholar
Charlesworth, B., & Charlesworth, D., (1973). Selection of new inversions in multi-locus genetic systems. Genetical Research 21, 167183.CrossRefGoogle Scholar
Charlesworth, B., Charlesworth, D., Loukas, M., & Morgan, K., (1979). A study of linkage disequilibrium in British populations of Drosophila subobscura. Genetics 92, 983994.CrossRefGoogle ScholarPubMed
Chovnick, A., (1973). Gene conversion and transfer of genetic information within the inverted region of inversion heterozygote. Genetics 15, 123131.CrossRefGoogle Scholar
Crow, J. F., & Kimura, K., (1970). An Introduction to Population Genetics Theory. New York: Harper and Row.Google Scholar
Deakin, M. A., (1972). A model for inversion polymorphism. Journal of Theoretical Biology 35, 191212.CrossRefGoogle Scholar
Deakin, M. A., & Teague, R. B., (1974). A generalized model for inversion polymorphism. Journal of Theoretical Biology 48, 105123.CrossRefGoogle ScholarPubMed
Dobzhansky, Th. (1970). Genetics of the Evolutionary Process. New York: Columbia University Press.Google Scholar
Feldman, M. W., & Christiansen, F. B., (1975). The effect of subdivision in two loci without selection. Genetical Research 24, 151162.CrossRefGoogle Scholar
Fontdevila, A., Zapata, C., Álvarez, G., Sánchez, L., Méndez, J., & Enriquez, I., (1983). Genetic coadaptation in the chromosomal polymorphism of Drosophila subobscura. I. Seasonal changes of gametic disequilibrium in a natural population. Genetics 105, 935955.CrossRefGoogle Scholar
Foss, E., Lande, R., Stahl, F. W., & Steinberg, C. M., (1993). Chiasma interference as a function of genetic distance. Genetics 133, 681691.CrossRefGoogle ScholarPubMed
Ishii, K., & Charlesworth, B., (1977). Associations between allozyme loci and gene arrangements due to hitch-hiking effects of new inversions. Genetical Research 30, 93106.CrossRefGoogle Scholar
Knibb, W. R., & Barker, J. S. F., (1988). Polymorphic inversion and esterase loci complex on chromosome 2 of Drosophila buzzatii. II. Spatial variation. Australian Journal of Biological Science 41, 239246.CrossRefGoogle ScholarPubMed
Knibb, W. R., East, P. D., & Barker, J. S. F., (1987). Polymorphic inversion and esterase loci complex on chromosome 2 of Drosophila buzzatii. I. Linkage disequilibria. Australian Journal of Biological Science 40, 259269.CrossRefGoogle Scholar
Krimbas, C. B., & Loukas, M., (1980). The inversion polymorphism of Drosophila subobscura. Evolutionary Biology 12, 163234.CrossRefGoogle Scholar
Krimbas, C. B., & Powell, J. R., (1992). Drosophila Inversion Poymorphism. London: CRC Press.Google Scholar
Lewontin, R. C., (1964). The interaction of selection and linkage. I. Heterotic models. Genetics 50, 757782.CrossRefGoogle Scholar
Lewontin, R. C., (1974). The Genetic Basis of Evolutionary Change. New York: Columbia University Press.Google Scholar
Lewontin, R. C., (1988). On measures of gametic disequilibrium. Genetics 120, 849852.CrossRefGoogle ScholarPubMed
Lewontin, R. C., & Kojima, K., (1960). The evolutionary dynamics of complex polymorphisms. Evolution 14, 458472.Google Scholar
Li, W. H., & Nei, M., (1974). Stable linkage disequilibrium without epistasis in subdivided populations. Theoretical Population Biology 6, 173183.CrossRefGoogle ScholarPubMed
MATHEMATICA v2.2 (1993). Wolfram Research Inc.Google Scholar
Nei, M., & Li, W. H., (1973). Linkage disequilibrium in subdivided populations. Genetics 75, 213219.CrossRefGoogle ScholarPubMed
Nei, M., & Li, W. H., (1975). Probability of identical monomorphism in related species. Genetical Research 26, 3143.CrossRefGoogle ScholarPubMed
Nei, M., & Li, W. H., (1980). Non-random association between electromorphs and inversion chromosomes in finite populations. Genetical Research 35, 6583.CrossRefGoogle ScholarPubMed
Robinson, W. P., Asmussen, M. A., & Thomson, G. (1991 a). Three-locus systems impose additional constrains on pairwise disequilibria. Genetics 129, 223230.CrossRefGoogle Scholar
Robinson, W. P., Cambon-Thomsen, A., Borot, N., Klitz, W., & Thomson, G. (1991 b). Selection, hitchhiking and disequilibrium analysis at three linked loci with application to HLA data. Genetics 129, 231248.CrossRefGoogle ScholarPubMed
Ruiz, A., Santos, M., Barbadilla, A., Quezada-Diaz, J. E., Hasson, E., & Fontdevila, A., (1991). Genetic variance for body size in a natural population of Drosophila buzzatii. Genetics 128, 739750.CrossRefGoogle Scholar
Sperlich, D., & Pfriem, P., (1986). Chromosomal polymorphism in natural and experimental populations. In The Genetics and Biology of Drosophila. London: Academic Press.Google Scholar
Strobeck, C., (1983). Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics 103, 545555.CrossRefGoogle ScholarPubMed
Tachida, H., (1994). Decay of linkage disequilibrium in a finite island model. Genetical Research 64, 137144.CrossRefGoogle Scholar
Thomson, G., & Baur, M., (1984). Third order linkage disequilibrium. Tissue Antigens 24, 250255.CrossRefGoogle ScholarPubMed
Wasserman, M., (1968). Recombination-induced chromosomal heterosis. Genetics 58, 125139.CrossRefGoogle ScholarPubMed
Zapata, C., & Álvarez, G., (1987). Gametic disequilibrium in populations of Drosophila subobscura: a review of experimental evidence. Genética Ibérica 39, 593616.Google Scholar
Zapata, C., & Álvarez, G., (1992). The detection of gametic disequilibrium between allozyme loci in natural populations of Drosophila. Evolution 46, 19001917.CrossRefGoogle ScholarPubMed
Zapata, C., Álvarez, G., Doxil, M., & Fontdevila, A., (1986). Genetic coadaptation in the chromosomal polymorphism of Drosophila subobscura. II. Changes of gametic disequilibrium in experimental populations. Genetics 71, 149160.Google Scholar