Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T08:58:50.477Z Has data issue: false hasContentIssue false

Dominant hemimelia and En-1 on mouse chromosome 1 are not allelic

Published online by Cambridge University Press:  14 April 2009

Maureen Higgins
Affiliation:
MRC Human Genetics Unit, Crewe Road, Edinburgh EH14 8XU, UK Department of Obstetrics and Gynaecology, University of Edinburgh, Centre for Reproductive Biology, 37, Chalmers Street, Edinburgh EH3 9EW, U.K.
Robert E. Hill
Affiliation:
MRC Human Genetics Unit, Crewe Road, Edinburgh EH14 8XU, UK
John D. West*
Affiliation:
Department of Obstetrics and Gynaecology, University of Edinburgh, Centre for Reproductive Biology, 37, Chalmers Street, Edinburgh EH3 9EW, U.K.
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous studies have shown that En-1, a homeobox-containing gene, maps close to or at the Dh locus in the mouse. Since homeobox-containing genes are key genes in the control of development the close proximity of En-1 to the developmentally significant gene Dh raised the possibility that the Dh mutation represented a mutant allele of En-1. A genetic analysis involving En-1, Dh, and other chromosome 1 markers (Emv-17, In and Pep-3) shows that although Dh and En-1 are closely linked they are separable by recombination (4/563). The likely gene order and recombination frequencies of these loci are: In (5.2±0.9) Emv-17 (1.1±0.4) Dh (0.7±0.4) En-1 (3.0±0.7) Pep-3. This shows that Dh is not a mutant allele of En-1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Barsh, G. S. & Epstein, C. J. (1989). The long range restriction map surrounding the mouse agouti locus reveals a disparity between physical and genetic distances. Genomics 5, 918.CrossRefGoogle Scholar
Buchberg, A. M.Taylor, B. A.Jenkins, N. A. & Copeland, N. G. (1986). Chromosomal localisation of EMV-16 and EMV-17, two closely linked ecotropic proviruses of RF/J mice. Journal of Virology 60, 11751178.CrossRefGoogle ScholarPubMed
Carter, T. C. (1951). The genetics of luxate mice. I. Morphological abnormalities of heterozygotes and homozygotes. Journal of Genetics 50, 277299.CrossRefGoogle ScholarPubMed
Carter, T. C. (1953). The genetics of luxate mice. III. Horseshoe kidney, hydronephrosis and lumbar reduction. Journal of Genetics 51, 441457.CrossRefGoogle Scholar
Carter, T. C. (1954). The genetics of luxate mice. IV. Embryology. Journal of Genetics 52, 135.CrossRefGoogle Scholar
Chapman, V. M.Ruddle, F. H. & Roderick, T. H. (1971). Linkage of isozyme loci in the mouse: phosphoglucomutase-2 (Pgm-2), mitochondrial NADP malate dehydrogenase (Mod-2), and dipeptidase-1 (Dip-1). Biochemical Genetics 5, 101110.CrossRefGoogle ScholarPubMed
Davidson, D.Graham, E.Sime, C. & Hill, R. (1988). A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse. Development 104, 305316.CrossRefGoogle ScholarPubMed
Davis, C. A.Holmyard, D. P.Millen, K. J. & Joyner, A. L. (1991). Examining pattern formation in mouse, chicken and frog embryos with an En specific antisera. Development 111, 287298.CrossRefGoogle Scholar
Davis, C. A. & Joyner, A. L. (1988). Expression patterns of the homeobox containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during development. Genes & Development 2, 17361744.CrossRefGoogle Scholar
Dickie, M. M. (1968). Mouse News Letter 38, 24.Google Scholar
Forsthoefel, P. F. (1958). The skeletal effects of the luxoid gene in the mouse, including its interaction with the luxate gene. Journal of Morphology 102, 247288.CrossRefGoogle Scholar
Forsthoefel, P. F. (1959). The embryological development of the skeletal effects of the luxoid gene in the mouse, including its interaction with the luxate gene. Journal of Morphology 104, 89142.CrossRefGoogle Scholar
Green, M. C. (1967). A defect of the splanchnic mesoderm caused by the mutant gene Dominant hemimelia in the mouse. Cellularity Biology 15, 6289.Google ScholarPubMed
Gruneberg, H. (1963). The Pathology of Development. Blackwell Press, Oxford.Google Scholar
Higgins, M.West, J. D. & Hill, R. E. (1990). En-1 is not allelic with Dh. Mouse Genome 87, 8081.Google Scholar
Higgins, M. (1991). Genetic and molecular studies of the Dominant hemimelia locus in the mouse. Ph.D. Thesis. University of Edinburgh.Google Scholar
Hill, R. E.Hall, A. E.Sime, C. M. & Hastie, N. D. (1987). A mouse homeo box-containing gene maps near a Cellularity mutation. Cytogenetics & Cell Genetics 44, 171174.CrossRefGoogle Scholar
Jenkins, N. A.Copeland, N. G.Taylor, B. A.Bedigan, H. G. & Lee, B. K. (1982). Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissue of B x H2 recombinant inbred mice. Journal of Virology 42, 379388.CrossRefGoogle Scholar
Joyner, A. L.Komberg, T.Coleman, K. G.Cox, D. R. & Martin, G. R. (1985). Expression during embryogenesis of a mouse gene with sequence homology to the Drosophila engrailed gene. Cell 43, 2937.CrossRefGoogle Scholar
Joyner, A. L. & Martin, G. R. (1987). En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes & Development 1, 2938.CrossRefGoogle Scholar
Knudsen, T. B. & Kochhar, D. M. (1981). The role of morphogenetic cell death during abnormal limb-bud outgrowth in mice heterozygous for the dominant mutation Hemimelic extra toe (Hm1). Journal of Embryology & Experimental Morphology (Suppl.) 65, 289307.Google Scholar
Kornberg, T. (1981 a). engrailed: a gene controlling compartment and segment formation in Drosophila. Proceedings of the National Academy of Sciences, USA 78, 10951099.CrossRefGoogle ScholarPubMed
Kornberg, T. (1981 b). Compartments in the abdomen of Drosophila and the role of the engrailed locus. Cellularity Biology 86, 363372.Google ScholarPubMed
Lawrence, P. & Struhl, G. (1982). Further studies of the engrailed phenotype in Drosophila. EM BO J. 1, 827833.CrossRefGoogle ScholarPubMed
Lewis, W. H. P. & Truslove, G. M. (1969). Electrophoretic heterogeneity of mouse erythrocyte peptidase. Biochemical Genetics 3, 493498.CrossRefGoogle Scholar
Lundin, L.-G. (1979). Evolutionary conservation of large chromosome segments reflected in mammalian gene maps. Clinical Genetics 16, 7281.CrossRefGoogle ScholarPubMed
Martin, G. R.Richman, M.Reinsch, S.Nadeau, J. H. & Joyner, A. L. (1990). Mapping of two mouse engrailedlike genes: close linkage of En-1 to dominant hemimelia (Dh) on chromosome 1 and of En-2 to hemimelic extratoes (Hx) on chromosome 5. Genomics 6, 302308.CrossRefGoogle ScholarPubMed
Nadeau, J. H. (1989). Genome duplication and comparative gene mapping. In Advanced Techniques in Chromosome Research (ed. Adolph, K.). Dekker, New York.Google Scholar
Nusslein-Volhard, C. & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795801.CrossRefGoogle ScholarPubMed
Searle, A. G. (1964). The genetics and morphology of two luxoid mutants in the house mouse. Genetical Research 5, 171197.CrossRefGoogle Scholar
Shih, C.-CStoye, J. P. & Coffin, J. M. (1988). Highly preferred targets for retrovirus integration. Cell 53, 531537.CrossRefGoogle ScholarPubMed