Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T05:25:20.643Z Has data issue: false hasContentIssue false

The distribution of transposable elements on X chromosomes from a natural population of Drosophila simulans

Published online by Cambridge University Press:  14 April 2009

Sergey V. Nuzhdin
Affiliation:
Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614Institute of Molecular Genetics, Kurchatov Square, Moscow 123182, Russia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of 13 transposable element families along 15 X chromosomes from an African natural population of Drosophila simulans was determined by in situ hybridization to polytene chromosomes. The transposable elements cloned from Drosophila melanogaster all hybridized with Drosophila simulans chromosomes. The number of copies per family was 3·5 times lower in the latter species and correlated with the copy number per family in Drosophila melanogaster. With the exception of 297, the copy number per chromosome followed a Poisson distribution. Element frequencies per chromosome band were generally low. However, several sites of the distal region and the base of the X chromosome had high frequencies of occupation. Elements had higher abundance at the base of the chromosome compared to distal regions. Overall, the distribution of transposable elements in Drosophila simulans is similar to that found in Drosophila melanogaster. These data provide evidence for the operation of a force (or forces) opposing transpositional increase in copy number, and that this force is weaker at the bases of chromosomes, consistent with the idea that recombination between elements at non-homologous sites contains TE copy number. The reduction in copy number of all TE families in Drosophila simulans compared to Drosophila melanogaster can be explained by stronger selection against transposable element multiplication and/or lower rates of transposition in Drosophila simulans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Aquadro, C. F. (1992). Why is the genome variable? Insights from Drosophila. Trends in Genetics 8, 355362.CrossRefGoogle ScholarPubMed
Ashburner, M. (1989). Drosophila. A Laboratory Handbook. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.Google Scholar
Berg, D. E. & Howe, M. M. (1989). Mobile DNA. Washington, D.C.: American Society for Microbiology.Google Scholar
Biemont, C., Lemeunier, F., Guerreiro, M. P. G., Brookfield, J. F., Gautier, C., Aulard, S. & Pasyukova, E. G. (1994). Population dynamics of the copia, mdg1, mdg3, gypsy, and P transposable elements in a natural population of Drosophila melanogaster. Genetical Research 63, 197212.CrossRefGoogle Scholar
Biessmann, H., Valgeirsdottir, K., Lofsky, A., Chin, C., Ginther, B., Lewis, R. W. & Pardue, M. (1992). HeT-A, a transposable element specifically involved in ‘healing’ broken chromosome ends in Drosophila melanogaster. Molecular and Cellular Biology 12, 39103918.Google ScholarPubMed
Brookfield, J. F. Y., Montgomery, E. & Langley, C. H. (1984). Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310, 330331.CrossRefGoogle Scholar
Charlesworth, B. & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetical Research 42, 127.CrossRefGoogle Scholar
Charlesworth, B. & Lapid, A. (1989). A study of ten transposable elements on X chromosomes from a population of Drosophila melanogaster. Genetical Research 54, 113125.CrossRefGoogle ScholarPubMed
Charlesworth, B., Lapid, A. & Canada, D. (1992 a). The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. Genetical Research 60, 103114.CrossRefGoogle Scholar
Charlesworth, B., Lapid, A. & Canada, D. (1992 b). The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genetical Research 60, 115130.CrossRefGoogle Scholar
Charlesworth, B., Sniegowski, P. & Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215220.CrossRefGoogle ScholarPubMed
Davis, P. S., Shen, M. W. & Judd, B. H. (1986). Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proceedings of the National Academy of Sciences, USA 84, 174178.CrossRefGoogle Scholar
Dowsett, A. P. & Young, M. W. (1982). Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proceedings of the National Academy of Sciences, USA 79, 45704574.CrossRefGoogle ScholarPubMed
Dunsmuir, P., Brorein, W. J., Simon, M. A. & Rubin, G. M. (1980). Insertion of the Drosophila transposable element copia generates a 5 base pair duplication. Cell 21, 575579.CrossRefGoogle ScholarPubMed
Finnegan, D. J. (1992). Transposable elements. In The Genome of Drosophila melanogaster (ed. Lindsley, D. L. and Zimm, G. G.), pp. 10961107. San Diego: Academic Press.CrossRefGoogle Scholar
Godwin, A. R. & Liskay, M. (1994). The effects of insertions on mammalian intrachromosomal recombination. Genetics 136, 607617.CrossRefGoogle ScholarPubMed
Goldberg, M. L., Sheen, J.-Y., Gehring, W. J. & Green, M. M. (1983). Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proceedings of the National Academy of Sciences, USA 80, 50175021.CrossRefGoogle ScholarPubMed
Hey, J. (1989). The transposable portion of the genome of Drosophila algonquin is very different from that in Drosophila melanogaster. Molecular Biology and Evolution 6, 6679.Google Scholar
Kidwell, M. (1993). Lateral transfer in natural populations of eukaryotes. Annual Review in Genetics 27, 235256.CrossRefGoogle ScholarPubMed
Kimura, K. & Kidwell, M. (1994). Differences in P element population dynamics between the sibling species Drosophila melanogaster and Drosophila simulans. Genetical Research 63, 2738.CrossRefGoogle Scholar
Korol, A. B. & Iliadi, K. G. (1994). Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila. Heredity 72, 6468.CrossRefGoogle ScholarPubMed
Langley, C. H., Brookfield, J. F. Y. & Kaplan, N. L. (1983). Transposable elements in Mendelian populations. I. A theory. Genetics 104, 457472.CrossRefGoogle ScholarPubMed
Langley, C. H., Montgomery, E. A., Hudson, R., Kaplan, N. & Charlesworth, B. (1988). On the role of unequal exchange in the containment of transposable element copy number. Genetical Research 52, 223236.CrossRefGoogle ScholarPubMed
Lefevre, G. (1976). A photographic representation of the polytene chromosomes of Drosophila melanogaster salivary glands. In The Genetics and Biology of Drosophila, Vol 1a (ed. Ashburner, M. and Novitski, E.), pp. 3136. London: Academic Press.Google Scholar
Leibovitch, B. A., Glushkova, E. G., Pasyukova, E. G., Belyaeva, E. S. & Gvozdev, V. A. (1992). Comparative analysis of retrotransposon localization and mobility in sibling species Drosophila simulans and Drosophila melanogaster. Genetika 28, 8597.Google Scholar
Lemeunier, F., David, J. R. & Tsacas, L. (1986). The melanogaster species group. In The Genetics and Biology of Drosophila, Vol. 3e (ed. Ashburner, M., Carson, H. L. & Thompson, J. N. Jr), pp. 147256. London: Academic Press.Google Scholar
Lindsley, D. L. and Zimm, G. G. (1992). The Genome of Drosophila melanogaster. San Diego: Academic Press.Google Scholar
Mackay, T. F. C., Lyman, R. F. & Jackson, M. S. (1992). Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics 130, 315332.CrossRefGoogle ScholarPubMed
Montgomery, E. A., Charlesworth, B. & Langley, C. H. (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogastcr. Genetical Research 49, 3141.CrossRefGoogle Scholar
Montgomery, E. A., Huang, S.-M., Langley, C. H. & Judd, B. H. (1991). Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129, 10851098.CrossRefGoogle ScholarPubMed
Montgomery, E. A. & Langley, C. H. (1983). Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population. Genetics 104, 473483.CrossRefGoogle Scholar
Nuzhdin, S. V. & Mackay, T. F. C. (1994). Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genetical Research 63, 139144.CrossRefGoogle ScholarPubMed
Nuzhdin, S. V. & Mackay, T. F. C. (1995). The genomic rate of transposable element movement in Drosophila melanogaster. Molecular Biology and Evolution (in the press).CrossRefGoogle Scholar
O'Hare, K., Levis, R. & Rubin, G. M. (1983). Transcription of the white locus in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 80, 69176921.CrossRefGoogle Scholar
Pasyukova, E. G. & Nuzhdin, S. V. (1993). Doc and copia instability in an isogenic Drosophila melanogaster stock. Molecular and General Genetics 240, 302306.CrossRefGoogle Scholar
Shrimpton, A. E., Montgomery, E. A. & Langley, C. H. (1986). Om mutations in Drosophila ananassae are linked to insertions of a transposable element. Genetics 114, 125135.CrossRefGoogle ScholarPubMed
Sniegowski, P. D. & Charlesworth, B. (1994). Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics 137, 815827.CrossRefGoogle ScholarPubMed
Sturtevant, A. H. (1925). The effect of unequal crossing over at the Bar locus in Drosophila. Genetics 10, 117147.CrossRefGoogle ScholarPubMed