Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T08:47:35.710Z Has data issue: false hasContentIssue false

Differential inhibition of the initiation of DNA replication in stringent and relaxed strains of Escherichia coli

Published online by Cambridge University Press:  14 April 2009

Elena C. Guzman
Affiliation:
Departamento de Bioquimica y Biologia Molecular y Genetica, Laboratorio de Genetica, Universidad de Extremadura, 06080 Badajoz, Spain
Francisco J. Carrillo
Affiliation:
Departamento de Bioquimica y Biologia Molecular y Genetica, Laboratorio de Genetica, Universidad de Extremadura, 06080 Badajoz, Spain
Alfonso Jimenez-Sanchez
Affiliation:
Departamento de Bioquimica y Biologia Molecular y Genetica, Laboratorio de Genetica, Universidad de Extremadura, 06080 Badajoz, Spain
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Starvation for isoleucine inhibits chromosome, minichromosome and pBR322 DNA replication in a stringent strain of E. coli, but does not do so in a relaxed mutant. Starvation for other amino acids inhibits either chromosome and minichromosome replication in both strains. From these results we conclude that oriC and pBR322 replication are stringently regulated and that isoleucine seems not to be essential for the protein synthesis required at the initiation of oriC replication. Deprivation of isoleucine in a Rel strain gives rise to amplification of minichromosome and pBR322 with a better yield of the latter plasmid than that following treatment with chloramphenicol.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Bremer, H. & Churchward, G. (1977). Deoxyribonucleic acid synthesis after inhibition of initiation of rounds of replication in Escherichia coli B/r. Journal of Bacteriology 130, 692697.CrossRefGoogle ScholarPubMed
Cashel, M. (1975). Regulation of bacterial ppGpp and pppGpp. Annual Review of Microbiology 29, 301318.CrossRefGoogle ScholarPubMed
Clewell, D. B. & Helinski, D. R. (1972). Effect of growth conditions on the formation of the relaxation complex of supercoiled ColE1 deoxyribonucleic acid and protein in Escherichia coli. Journal of Bacteriology 110, 11351146.CrossRefGoogle ScholarPubMed
Eckhardt, T. (1978). A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1, 584588.CrossRefGoogle ScholarPubMed
Gallant, J. A. (1979). Stringent control in E. coli. Annual Review of Genetics 13, 393415CrossRefGoogle ScholarPubMed
Hecker, M., Schroeter, A. & Mach, F. (1983). Replication of pBR322 DNA in stringent and relaxed strains of Escherichia coli. Molecular and General Genetics 190, 355357.CrossRefGoogle ScholarPubMed
Kaguni, J. M., Fuller, R. S. & Kornberg, A. (1982). Enzymatic replication of E. coli chromosomal origin is bidirectional. Nature 296, 623627.CrossRefGoogle ScholarPubMed
Lin-Chao, S. & Bremer, H. (1986). Effect of relA function on the replication of plasmid pBR322 in Escherichia coli. Molecular and General Genetics 203, 150153.CrossRefGoogle ScholarPubMed
Maaloe, O. & Hanawalt, P. C. (1961). Thymine deficiency and the normal DNA replication cycle. Journal of Molecular Biology 3, 144155.CrossRefGoogle ScholarPubMed
Messer, W. (1972). Initiation of the deoxyribonucleic acid replication in Escherichia coli B/r: chronology of events and transcription control of initiation. Journal of Bacteriology 112, 712.CrossRefGoogle ScholarPubMed
Pao, C. C. & Gallant, J. (1978). A gene involved in the metabolic control of ppGpp synthesis. Molecular and General Genetics 158, 271277.CrossRefGoogle ScholarPubMed
Rokeach, L. A. & Zyskind, J. W. (1986). RNA terminating within the E. coli origin of replication: Stringent regulation and control by DnaA protein. Cell 46, 763771.CrossRefGoogle Scholar
Ryals, J., Little, R. & Bremer, H. (1982). Control of rRNA and tRNA synthesis in Escherichia coli by guanosine tetraphosphate. Journal of Bacteriology 151, 12611268.CrossRefGoogle ScholarPubMed