Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T00:24:09.507Z Has data issue: false hasContentIssue false

Decay of linkage disequilibrium in a finite island model

Published online by Cambridge University Press:  14 April 2009

Hidenori Tachida
Affiliation:
Department of Biology, Faculty of Science, Kyushu University33, Fukuoka 812, Japan
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Time-dependent behaviour of linkage disequilibrium when there was initial linkage disequilibrium is studied in a finite island model assuming neutrality. Explicit expressions for linkage disequilibrium parameters are obtained. From these expressions, the initial and the ultimate decay rates of linkage disequilibrium parameters are found to be increased and decreased, respectively, by finiteness of the population when recombination rate, migration rate and inverse of subpopulation size are of comparable order. Thus, linkage disequilibrium created in the past may persist longerin smaller subdivided populations. Also, differentiation of the gametic parameter of linkage disequilibrium among subpopulations is found to diminish quickly compared tothe linkage disequilibrium in the whole population. Implications of these results for the interpretation of linkage disequilibria in natural populations are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Begun, D. J. & Aquadro, C. F. (1993). African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature 365, 548550.Google Scholar
Cockerham, C. C. & Weir, B. S. (1973). Descent measure for two loci with some applications. Theoretical Population Biology 4, 300330.CrossRefGoogle ScholarPubMed
Crow, J. F. & Kimura, M. (1970). An Introduction to Population Genetics Theory. Harper & Row, New York.Google Scholar
Feldman, M. W. & Christiansen, F. B. (1975). The effect of population subdivision on two loci without selection. Genetical Research 24, 151162.Google Scholar
Fincham, J. R. S. (1983). Genetics. Jones and Bartlett Publishers, Boston.Google Scholar
Hastbacka, J., de la Chapelle, A., Kaitila, I., Sistonen, P., Weaver, A. & Lander, E. (1992). Linkage disequilibrium mapping in isolated founder populations: disastrophic dysplasia in Finland. Nature Genetics 2, 204211.CrossRefGoogle ScholarPubMed
Hill, W. G. & Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38, 226231.CrossRefGoogle ScholarPubMed
Kimura, M. (1963). A probability method for treating inbreeding systems especially with linked genes. Biometrics 19, 117.CrossRefGoogle Scholar
Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217, 624626.CrossRefGoogle ScholarPubMed
Langley, C. H., Montgomery, E. A. & Quattlebaum, W. F. (1982). Restriction map variation in the Adh region of Drosophila. Proceedings of the National Academy of Sciences, U.S.A. 79, 56315635.Google Scholar
Miyashita, N. & Langley, C. H. (1988). Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics 120, 199212.CrossRefGoogle ScholarPubMed
Miyashita, N. T., Aguade, M. & Langley, C. H. (1993). Linkage disequilibrium in the white region of Drosophila melanogaster. Genetical Research 62, 101109.Google Scholar
Mukai, T., Mettler, L. E. & Chigusa, S. I. (1971). Linkage disequilibrium in a local population of Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 68, 10651069.Google Scholar
Nei, M. & Li, W.-H. (1973). Linkage disequilibrium in subdivided populations. Genetics 75, 213219.Google Scholar
Ohta, T. (1982 a). Linkage disequilibrium with the island model. Genetics 101, 139155.Google Scholar
Ohta, T. (1982 b). Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proceedings of the National Academy of Sciences, U.S.A. 79, 19401944.Google Scholar
Ohta, T. & Kimura, M. (1969). Linkage disequilibrium due to random genetic drift. Genetical Research 13, 4755.CrossRefGoogle Scholar
Schaeffer, S. W. & Miller, E. L. (1993). Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics 135, 541552.CrossRefGoogle ScholarPubMed
Shriver, M. D., Jin, L., Chakraborty, R. & Boerwinkle, E. (1993). VNTR allele frequency distributions under stepwise mutation model: A computer simulation approach. Genetics 134, 983993.Google Scholar
Smouse, P. E., Neel, J. V. & Liu, W. (1983). Multiple-locus departures from panmictic equilibrium within and between village gene pools of amerindian tribes at different stages of agglomeration. Genetics 104, 133153.Google Scholar
Tachida, H. & Cockerham, C. C. (1986). Analysis of linkage disequilibrium in an island model. Theoretical Population Biology 29, 161197.Google Scholar
Watterson, G. A. (1970). The effect of linkage in a finite random-mating population. Theoretical Population Biology 1, 7287.CrossRefGoogle Scholar
Valdes, A. M., Slatkin, M. & Freimer, N. B. (1993). Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133, 737749.Google Scholar
Weir, B. S. (1992). Independence of VNTR alleles denned as fixed bins. Genetics 130, 873887.Google Scholar
Weir, B. S. & Cockerham, C. C. (1969). Group inbreeding with two linked loci. Genetics 63, 711742.CrossRefGoogle ScholarPubMed
Weir, B. S. & Cockerham, C. C. (1974). Behavior of pairs of loci in finite monoecious populations. Theoretical Population Biology 6, 323354.CrossRefGoogle ScholarPubMed
Wright, S. (1933). Inbreeding and recombination. Proceedings of the National Academy of Sciences, U.S.A. 19, 420433.CrossRefGoogle ScholarPubMed