Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T06:04:54.607Z Has data issue: false hasContentIssue false

Cytogenetic analysis of the echinoid (ed), dumpy (dp) and clot (cl) region in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

János Szidonya*
Affiliation:
Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, H-6701, Szeged POB 521, Hungary.
Gunter Reuter
Affiliation:
Department of Genetics, Martin Luther University, DDR-402 Halle/S. Domplatz 1, German Democratic Republic
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chromosomal region surrounding the ed, dp and cl genes has been studied cytogenetically (24–26 on 2L chromosome). It contains three Minutes and a haplo-sterile function. For isolation of deficiencies and mutations these haplo-insufficient functions were covered by an insertional translocation of 24D4-25F2 into the X chromosome, or by tandem duplications. 112 lethal and visible mutations induced by EMS and X-rays have been localized by deficiency mapping to 20 subregions. They specify 42 loci in a 48 band interval consistent with the notion that most of the bands encode a single lethal function. The dp, DTS, tkv and suppressor/enhancer loci for position-effect variegation were studied in detail. A dominant suppressor function was localized within the structural part of the dp complex. New non-conditional lethals have been isolated for the DTS locus. Complementation analysis with the previously identified dominant heat-sensitive alleles places the site for heat sensitivity in the middle of the locus. Two haplo-abnormal enhancers of position-effect variegation were localized in the region 25F2–26A1. A triplo-abnormal suppressor function maps to 26B2–5; 26B9. The dose-dependent functions of these loci were studied by the use of deficiencies and duplications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Barrett, J. A. (1980). The estimation of mutationally silent loci in saturation-mapping experiments. Genetical Research 35, 3344.Google Scholar
Bridges, P. N. (1942). A new map of the salivary gland 2L-chromosome of Drosophila melanogaster. Journal of Heredity 33, 403408.Google Scholar
Broderick, D. J. & Roberts, P. A. (1982). Localization of Minutes to specific polytene chromosome bands by means of overlapping duplications. Genetics 102, 7174.Google Scholar
Dorn, R., Heymann, S., Lindigkeit, R. & Reuter, G. (1986). Suppressor mutation of position-effect variegation in Drosophila melanogaster effecting chromatin properties. Chromosoma 93, 398403.CrossRefGoogle Scholar
Gausz, J., Bencze, G., Gyurkovics, H., Ashburner, M., Ish-Horowicz, D. & Holden, H. H. (1979). Genetic characterization of the 87C region of the third chromosome of Drosophila melanogaster. Genetics 93, 917934.CrossRefGoogle ScholarPubMed
Gausz, J., Awad, A. A. M. & Gyurkovics, H. (1980). New deficiencies for the kar locus. Drosophila Information Service 55, 4546.Google Scholar
Gausz, J., Gyurkovics, H., Bencze, G., Awad, A. A. M., Holden, J. J. & Ish-Horowicz, D. (1981). Genetic characterization of the region between 86F1·2 and 87B15 on chromosome 3 of Drosophila melanogaster. Genetics 98. 775789.CrossRefGoogle ScholarPubMed
Grace, D. (1980). Genetic analysis of the dumpy complex locus in Drosophila melanogaster: Complementation, fine structure and function. Genetics 94, 647662.CrossRefGoogle ScholarPubMed
Hall, L. M. C., Mason, P. J. & Spiere, P. (1983). Transcripts, genes and bands in 315000 base-pairs of Drosophila DNA. Journal of Molecular Biology 169, 8396.Google Scholar
Hilliker, A. J., Clark, S. H. & Chovnick, A. (1980). Cytogenetic analysis of the chromosomal region immediately adjacent to the rosy locus in Drosophila melanogaster. Genetics 95, 95110.CrossRefGoogle Scholar
Ising, G. & Block, K. (1981). Derivation-dependent distribution of insertion sites for a Drosophila transposon. Cold Spring Harbor Symposium on Quantitative Biology 45, 527544.CrossRefGoogle ScholarPubMed
Judd, B. H., Shen, M. W. & Kaufman, T. C. (1972). The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics 71, 139156.CrossRefGoogle ScholarPubMed
Kotarski, M. A., Pickert, S. & Maclntyre, B. J. (1983). A cytogenetic analysis of the chromosomal region surrounding the α-glycerophosphate dehydrogenase locus of Drosophila melanogaster. Genetics 105, 371386.Google Scholar
Lewis, E. B. & Bacher, F. (1968). Method of feeding ethyl methane sulfonate (EMS) to Drosophila males. Drosophila Information Service 43, 193.Google Scholar
Lim, J. K. & Snyder, L. A. (1974). Cytogenetic and complementation analysis of recessive lethal mutations induced in the X chromosome of Drosophila by three alkylating agents. Genetical Research 24, 110.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Washington: Carnegie Institute:Google Scholar
Lindsley, D. L., Sandler, L., Baker, B. S., Carpenter, A. T. C., Denel, R. E., Hall, J. C., Jakobs, P. A., Miklos, G. L. G., Davie, B. K., Gethmann, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Parry, D. M. & Gould-Somero, M. (1972). Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71, 157184.Google Scholar
Nusslein-Volhard, C., Wieschaus, E. & Kluding, H. (1984). Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux's Archives of Developmental Biology 193, 267282.CrossRefGoogle ScholarPubMed
Reuter, G. & Wolff, I. (1981). Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Molecular and General Genetics 182, 516519.Google Scholar
Reuter, G., Dorn, R. & Hoffmann, H. J. (1982). Butyrate sensitive suppressor of position-effect variegation mutations in Drosophila melanogaster. Molecular and General Genetics 188, 480485.CrossRefGoogle ScholarPubMed
Reuter, G. & Szidonya, J. (1983). Cytogenetic analysis of variegation suppressors and dominant temperature-sensitive lethal in region 23–26 of chromosome 2L in Drosophila melanogaster. Chromosoma 88, 277285.Google Scholar
Reuter, G., Gausz, J., Gyurkovics, H., Friede, B., Bang, R., Spierer, A., Hall, L. M. C. & Spierer, P. (1987). Modifiers of position-effect variegation in the region from 86 to 88 of Drosophila melanogaster third chromosome. Molecular and General Genetics 210, 429436.CrossRefGoogle Scholar
Roberts, D. B., Brock, H. W., Rudden, N. C. & Evans-Roberts, S. (1985). A genetic and cytogenetic analysis of the region surrounding the LSP-1 β-gene in Drosophila melanogaster. Genetics 109, 145156.CrossRefGoogle ScholarPubMed
Rosenbluth, R., Ezzel, D. & Suzuki, D. T. (1972). Temperature-sensitive mutations in Drosophila melanogaster. IX. Dominant cold-sensitive lethals on the autosomes. Genetics 70, 7586.Google Scholar
Saura, A. O. (1980). Electron microscopic analysis of the banding pattern in the salivary gland chromosome of Drosophila melanogaster: Divisions 23 through 26 of 2L. Hereditas 93, 295309.CrossRefGoogle Scholar
Semeshin, V. F., Baricheva, E. M., Belyaeva, E. S. & Zhimulev, I. F. (1985). Electron microscopical analysis of Drosophila polytene chromosomes. II. Development of complex puffs. Chromosoma 91, 210233.Google Scholar
Semeshin, V. F. & Szidonya, J. (1985). EM mapping of rearrangements in the 24–25 section of D. melanogaster 2L chromosomes. Drosophila Information Service 61, 148154.Google Scholar
Suzuki, D. T. & Procunier, D. (1969). Temperature-sensitive mutations in Drosophila melanogaster: III. Dominant lethals and semilethals on chromosome 2. Proceedings of the National Academy of Sciences, USA 62, 369376.CrossRefGoogle Scholar
Suzuki, D. T. (1970). Temperature-sensitive mutations in Drosophila melanogaster. Science 170, 695706.Google Scholar
Velissariou, V. & Ashburner, M. (1980). The secretory proteins of the larval salivary gland of Drosophila melanogaster. Cytogenetic correlation of a protein and a puff. Chromosoma 77, 1327.CrossRefGoogle Scholar
Wadworth, S. C., Craig, E. A. & McCarty, B. J. (1980). Genes for three Drosophila heat shock induced proteins at a single locus. Proceedings of the National Academy of Sciences, USA 11, 21342137.CrossRefGoogle Scholar
Woodruff, R. C. & Ashburner, M. (1979). The genetics of a small autosomal region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. I. Characterization of deficiencies and mapping of Adh and visible mutations. Genetics 92, 117132.Google Scholar
Zhimulev, I. F., Pokholkova, G. V., Bgatov, A. V., Semeshin, V. F. & Belyaeva, E. S. (1981). Fine cytogenetical analysis of the band 10A1–2 and the adjoining region in the Drosophila melanogaster X chromosome: II. Genetical analysis. Chromosoma 82 2540.CrossRefGoogle ScholarPubMed