Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T13:08:15.349Z Has data issue: false hasContentIssue false

Curtailed, a new dominant T-allele in the house mouse

Published online by Cambridge University Press:  14 April 2009

A. G. Searle
Affiliation:
M.R.C. Radiobiological Research Unit, Harwell, Berkshire
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Curtailed (Tc) is a new T-allele which leads to complete or near-complete absence of the tail in heterozygotes, apart from a small caudal filament. Other heterozygous defects include absence of the axis odontoid process and of the nuclei pulposi, a tendency to have rib and vertebral fusions and a slight decrease in the average number of presacral vertebrae. Tc is lethal when homozygous, causing similar but more extreme defects than T, with absence of all limb-buds and non-closure of the neural folds. A comparison of Tc with other mutants suggests that the anomalies are mainly the result of more severe effects on the notochord-mesoderm system than in T. Differences between the genetic behaviour of T, Tc and Th are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Bennett, D. (1964). Embryological effects of lethal alleles in the t-region. Science, N.Y. 144, 263267.Google ScholarPubMed
Berry, R. J. (1960). Genetical studies on the skeleton of the mouse. XXVI. Pintail. Genet. Res. 1, 439451.CrossRefGoogle Scholar
Carter, T. C., Lyon, M. F. & Phillips, R. J. S. (1960). The genetic sensitivity to X-rays of mouse foetal gonads. Genet. Res. 1, 351355.CrossRefGoogle Scholar
Grüneberg, H. (1953). Genetical studies on the skeleton of the mouse. VI. Danforth's short-tail. J. Genet. 51, 317326.CrossRefGoogle Scholar
Grüneberg, H. (1958). Genetical studies on the skeleton of the mouse. XII. The development of Danforth's short-tail. J. Embryol. exp. Morph. 6, 124148.Google Scholar
Grüneberg, H. (1963). The Pathology of Development. Oxford: Blackwell.Google Scholar
Kuminek, K. (1959). Die Morphologie den unteren Wirbelsäule bei einen spontanen Kurzschwanzmutationen den Hausmaus. Biol. Zbl. 78, 719758.Google Scholar
Kuminek, K. (1960). Die Genetik einen neu aufgetratenen spontanen Kurzschwanzmutationen bei der Hausmaus. Z. VererbLehre, 91, 182200.Google Scholar
Lyon, M. F. (1956). Hereditary hair loss in the tufted mutant of the house mouse. J. Hered. 47, 101103.CrossRefGoogle Scholar
Lyon, M. F. (1959). A new dominant T-allele in the house mouse. J. Hered. 50, 140142.CrossRefGoogle Scholar
Lyon, M. F. & Meredith, R. (1964 a). Investigations of the nature of t-alleles in the mouse. I. Genetic analysis of a series of mutants derived from a lethal allele. Heredity, Lond. 19, 301312.CrossRefGoogle ScholarPubMed
Lyon, M. F. & Meredith, R. (1964 b). Investigations of the nature of t-alleles in the mouse. II. Genetic analysis of an unusual mutant allele and its derivations. Heredity, Lond. 19, 313325.CrossRefGoogle Scholar
Mackensen, J. A. & Stevens, L. C. (1960). Rib fusions, a new mutation in the mouse. J. Hered. 51, 264268.CrossRefGoogle Scholar
Theiler, K. (1951). Die Entstehung der Densluxation bei den Short Danforth-Maus. Arch. Julius Klaus-Stift. Vererb Forsch. 26, 450454.Google Scholar
Theiler, K. & Stevens, L. C. (1960). The development of rib fusions, a mutation in the house mouse. Am. J. Anat. 106, 171178.CrossRefGoogle ScholarPubMed