Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T00:07:13.809Z Has data issue: false hasContentIssue false

Controlling elements in the mouse X-chromosome: I. Interaction with the X-linked genes

Published online by Cambridge University Press:  14 April 2009

B. M. Cattanach
Affiliation:
City of Hope Medical Center, Duarte, California, U.S.A.
C. E. Pollard
Affiliation:
City of Hope Medical Center, Duarte, California, U.S.A.
J. N. Perez
Affiliation:
City of Hope Medical Center, Duarte, California, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mouse X-chromosome controlling elements, detected by their influence on the position effect variegation caused by the X-autosome translocation T (1; X) Ct, have been found to modify the heterozygous phenotypes of two X-linked genes. It is proposed that X-inactivation can be incomplete, the level of inactivation or the frequency of cells in which inactivation is incomplete being dependent upon the ‘state’ of the controlling element located in the X. The data suggest that this is a consequence of a reversal, or partial reversal, of inactivation of the X as a whole in some cells rather than a vairable spread of inactivation along the length of the X.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

References

REFERENCES

Baker, W. K. (1968). Position effect variegation. Adv. Genet. 14, 133169.CrossRefGoogle ScholarPubMed
Beutler, E. (1964). Gene inactivation: The distribution of gene products among populations of cells in heterozygous humans. Cold Spring Harb. Symp. Genet. Biol. 29, 261271.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1961). A chemically-induced variegated-type position effect in the mouse. Z. VererbLehre 92, 165182.Google ScholarPubMed
Cattanach, B. M. (1963). The inactive-X hypothesis and position effects in the mouse. Genetics 48, 884885.Google Scholar
Cattanach, B. M. (1966). Mouse News Lett. 35, 24.Google Scholar
Cattanach, B. M. (1968). Incomplete inactivation of the Tabby locus in the mouse X-chromosome. Genetics 60, 168.Google Scholar
Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of autosomal genes attached to the X-chromosome. Z. VererbLehre 96, 313323.Google ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse X chromosome. Genetics 57, 331346.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Perez, J. N. & Pollard, C. E.Controlling elements in the mouse X-chromosome. II. Location in the linkage map. Genet. Res. (in the Press).Google Scholar
Cohen, J. (1962). Position effect variegation at several closely linked loci in Drosophila melanogaster. Genetics 47, 647659.CrossRefGoogle ScholarPubMed
Dun, R. B. (1959). The development of growth of vibrissae in the house mouse with particular reference to the time of action of tabby (Ta) and the ragged (Ra) genes. Aust. J. biol. Sci. 12, 312330.CrossRefGoogle Scholar
Dun, R. B. & Frazer, A. S. (1959). Selection for an invariant character, vibrissae number, in the house mouse. Aust. J. biol. Sci. 12, 506523.CrossRefGoogle Scholar
Falconer, D. S. (1953). Total sex-linkage in the house mouse. Z. indukt. Abstamm.- u. VererbLehre 85, 210219.Google ScholarPubMed
Falconer, D. S. & Isaacson, J. H. (1969). Selection for expression of a sex-linked gene (Brindled) in mice. Heredity 24, 180.Google Scholar
Ferguson-Smith, M. A. (1965). Review Article: Karyotype-phenotype correlations in the gonadal dysgenesis and their bearing on the pathogenesis of malformations. J. med. Genet. 2, 93156.CrossRefGoogle ScholarPubMed
Ferguson-Smith, M. A., Alexander, D. S., Bowen, P., Goodman, R. M., Kaufmann, B. N., JrJones, H. W. & Heller, R. H. (1964). Clinical and cytogenetical studies in female gonadal dysgenesis and their bearing on the cause of Turner's syndrome. Cytogenetics 3, 355383.CrossRefGoogle ScholarPubMed
Frazer, A. S. & Kindred, B. M. (1960). Selection for an invariant character, vibrissae number, in the mouse. II. Limits to invariability. Aust. J. biol. Sci. 13, 4558.Google Scholar
Grumbach, M. M. (1964). Session I. Discussion, pp. 6267. Second Int. Conf. Congenital Malformations. New York: International Medical Congress, Ltd.Google Scholar
Lewis, E. B. (1950). The phenomenon of position effect variegation. Adv. Genet. 3, 73115.CrossRefGoogle Scholar
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, Lond. 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1964). Session I. Discussion, pp. 6768. Second Int. Conf. Congenital Malformations. New York: International Medical Congress, Ltd.Google Scholar
Lyon, M. F. (1966). Lack of evidence that inactivation of the mouse X-chromosome is incomplete. Genet. Res., Camb. 8, 197203.CrossRefGoogle ScholarPubMed
McClintock, B. (1951). Chromosome organization and genie expression. Cold Spring Harb. Symp. quant. Biol. 21, 1348.CrossRefGoogle Scholar
McClintock, B. (1965). The control of gene action in maize. Brookhaven Symp. Biol. 18, 162184.Google Scholar
Mintz, B. (1967). Gene control of mammalian pigmentary differentiation. I. Clonal origin of melanocytes. Proc. natn. Acad. Sci. U.S.A. 58, 344351.CrossRefGoogle ScholarPubMed
Nur, U. (1967). Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealy bug. Genetics 56, 375389.CrossRefGoogle ScholarPubMed
Ohno, S. & Cattanach, B. M. (1962). Cytological study of an X-autosome translocation in Mus musculus. Cytogenetics 1, 129140.CrossRefGoogle ScholarPubMed
Rawles, M. E. (1948). Origin of melanophores and their role in development of color patterns in vertebrates. Physiol. Res. 28, 383408.Google ScholarPubMed
Russell, L. B. (1963). Mammalian X-chromosome action: Inactivation limited in spread and in region of origin. Science, N.Y. 140, 976978.CrossRefGoogle ScholarPubMed
Russell, L. B. (1964). Another look at the single-active-X-hypothesis. Trans. N.Y. Acad. Sci. 26, 726736.CrossRefGoogle Scholar
Russell, L. B. & Bangham, J. W. (1961). Variegated-type position effects in the mouse. Genetics 46, 509525.CrossRefGoogle ScholarPubMed
Russell, L. B., Bangham, J. W. & Saylors, C. L. (1962). Delimitation of chromosomal regions involved in V-type position effects from X-autosome translocations in the mouse. Genetics 47, 981982.Google Scholar
Spofford, J. B. (1967). Single-locus modification of position effect variegation in Drosophila melanogaster. I. White variegation. Genetics 57, 751766.CrossRefGoogle ScholarPubMed