Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:16:03.809Z Has data issue: false hasContentIssue false

Comparison of two transformation systems for the assay of the Neurospora photoreactivating enzyme

Published online by Cambridge University Press:  14 April 2009

R. W. Tuveson
Affiliation:
Botany Department, University of Illinois, Urbana, Illinois 61801
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Neurospora crassa photoreactivating enzyme has been assayed for by the Hemophilus influenzae and Bacillus subtilis transformation systems. In contrast to the H. influenzae system, u.v.-treated transforming DNA from B. subtilis did not give evidence of reactivation of u.v. lesions by crude enzyme extracts from N. crassa when exposed to photoreactivating light. The u.v. dose required to inactivate B. subtilis transforming DNA is about ten times that required to inactivate H. influenzae DNA to the same level of survival. This difference in dose required to inactivate DNA's of about the same base composition probably reflects the greater u.v. resistance of the B. subtilis recipient strains used. Hypotheses are considered which suggest that N. crassa crude enzyme extracts contain either nucleases which degrade B. subtilis transforming DNA excessively or an inhibitory factor which affects the transformation process itself.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

References

REFERENCES

Anagnostopoulos, C. & Spizizen, J. (1961). Requirements for transformation in Bacillus subtilis. Journal of Bacteriology 81, 741746.CrossRefGoogle ScholarPubMed
Bott, K. & Strauss, B. S. (1965). The carrier state of Bacillus subtilis infected with the transducing bacteriophage SP 10. Virology 25, 212225.CrossRefGoogle Scholar
Bresler, S. E., Kalinin, V. L. & Perumov, D. A. (1970). Inactivation and mutagenesis on isolated DNA V. The importance of repairing enzymes for the inactivation of transforming DNA in vitro. Mutation Research 9, 119.CrossRefGoogle ScholarPubMed
Chang, L. T. & Tuveson, R. W. (1967). Ultraviolet-sensitive mutants of Neurospora crassa. Genetics 56, 801810.CrossRefGoogle ScholarPubMed
Kelner, A. (1949). Photoreactivation of ultraviolet-irradiated Escherichia coli with special reference to the dose-reduction principle and to ultraviolet induced mutation. Journal of Bacteriology 58, 511522.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurements with Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Mahler, I. (1965). Characteristics of an ultraviolet irradiation sensitive strain of Bacillus subtilis. Biochemical and Biophysical Research Communication 21, 384391.CrossRefGoogle ScholarPubMed
Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3, 208218.CrossRefGoogle Scholar
Marmur, J., Anderson, W. F., Matthews, L., Berns, K., Gajewska, E., Lane, D. & Doty, P. (1961). The effects of ultraviolet light on the biological and physical chemical properties of deoxyribonucleic acids. Journal of Cellular and Comparative Physiology 58 (supplement 1), 3355.CrossRefGoogle Scholar
Munakata, N. & Ikeda, Y. (1969). Inactivation of transforming DNA by ultraviolet irradiation; a study with ultraviolet-sensitive mutants of Bacillus subtilis. Mutation Research 7, 133139.CrossRefGoogle Scholar
Reiter, H. & Stauss, B. S. (1965). Repair of damage induced by a monofunctional alkylating agent in a transformable ultraviolet-sensitive strain of Bacillus subtilis. Journal of Molecular Biology 14, 179194.CrossRefGoogle Scholar
Rupert, C. S. (1960). Photoreactivation of transforming DNA by an enzyme from baker's yeast. Journal of General Physiology 43, 573595.CrossRefGoogle Scholar
Rupert, C. S. & Goodgal, S. H. (1960). Shape of ultraviolet inactivation curves of transforming deoxyribonucleic acid. Nature, London 185, 556557.CrossRefGoogle ScholarPubMed
Rupert, C. S., Goodgal, S. H. & Herriott, R. M. (1958). Photoreactivation in vitro of ultraviolet inactivated Hemophilus influenzae transforming factor. Journal of General Physiology 41, 451471.CrossRefGoogle ScholarPubMed
Setlow, J. K., Brown, D. C., Boling, M. E., Mattingly, A. & Gordon, M. P. (1968). Repair of deoxyrironucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyrironucleic acid. Journal of Bacteriology 95, 546558.CrossRefGoogle ScholarPubMed
Strauss, B. S., Reiter, H. & Searashi, T. (1966). Recovery from ultraviolet- and alkylating-agent-induced damage in Bacillus subtilis. Radiation Research, supplement 6, pp. 201211.Google Scholar
Sueoka, N. (1961). Variation and heterogeneity of base composition of deoxyrironucleic acids: a compilation of old and new data. Journal of Molecular Biology 3, 3140.CrossRefGoogle Scholar
Terry, C. E. & Setlow, J. K. (1967). Photoreactivating enzyme from Neurospora crassa. Photochemistry and Photobiology 6, 799803.CrossRefGoogle ScholarPubMed
Terry, C. E., Kilbey, B. J. & Howe, H. B. Jr. (1967). The nature of photoreactivation in Neurospora crassa. Radiation Research 30, 739747.CrossRefGoogle Scholar
Tomasz, A. (1969). Some aspects of the competent state in genetic transformation. Annual Review of Genetics 3, 217232.CrossRefGoogle Scholar
Tuveson, R. W. & Mangan, J. (1970). A. u.v.-sensitive mutant of Neurospora defective for photoreactivation. Mutation Research 9, 455466.CrossRefGoogle Scholar
Tuveson, R. W., West, D. J. & Barratt, R. W. (1967). Glutamic acid dehydrogenases in quiescent and germinating conidia of Neurospora crassa. Journal of General Microbiology 48, 235248.CrossRefGoogle ScholarPubMed
Warburg, O. & Christian, W. (1942). Isolierung und Kristallisation des gärangsferments Enolase. Biochemische Zeitschrift 310, 384421.Google Scholar
West, D. J., Tuveson, R. W., Barratt, R. W. & Fincham, J. R. S. (1967). Allosteric effects in nicotinamide adenine dinucleotide phosphate-specific glutamic dehydrogenase from Neurospora. The Journal of Biological Chemistry 242, 21342138.CrossRefGoogle ScholarPubMed