Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T05:44:38.677Z Has data issue: false hasContentIssue false

Commensalism, adaptation and gene flow: mosquitoes of the Culex pipiens complex in different habitats

Published online by Cambridge University Press:  14 April 2009

Christine Chevillon*
Affiliation:
Laboratoire Génétique et Environment, Institut des Sciences de l'Evolution (CNRS URA 327), Case Courrier 065, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex 05, France
Roger Eritja
Affiliation:
Servei de control de mosquits, Consell comarcal del baix Llobregat, Parc Torreblanca, Ctra N 340, 08980 Sant Feliu de Llobregat, Spain
Nicole Pasteur
Affiliation:
Laboratoire Génétique et Environment, Institut des Sciences de l'Evolution (CNRS URA 327), Case Courrier 065, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex 05, France
Michel Raymond
Affiliation:
Laboratoire Génétique et Environment, Institut des Sciences de l'Evolution (CNRS URA 327), Case Courrier 065, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex 05, France Department of Genetics, Uppsala university, Box 7003, S-75007 Uppsala, Sweden
*
* Author for correspondence.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two ecotypes have been described for Culex pipiens mosquitoes of the temperate zone: a human commensal type and a feral type, but their degree of evolutionary differentiation and taxonomic status are still unclear. The commensal form is characterized by life-history traits probably adaptive to underground man-made environments. This situation has sometimes been considered as an example of recent speciation although the existence of intermediate forms indicates that the balance between gene flow and disruptive selection should first be assessed. The present study was concerned with (1) the determination of biological traits involved in adaptation to commensalism, and (2) the pattern of gene flow within and between ecotypes in a restricted area. It was found that (1) significant differences in biological traits exist between mosquitoes from different habitats, (2) characteristics of the commensal type are not universal in mosquitoes from underground man-made habitats, (3) allozyme markers do not clearly differentiate ecotypes and (4) insecticide resistance genes, which reveal recent migration, occur in each ecotype. These results are discussed in the context of possible speciation due to commensalism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Aslamkhan, M. & Laven, H. (1970). Inheritance of autogeny in the Culex pipiens complex. Pakistan Journal of Zoology 2, 121147.Google Scholar
Auffray, J.-C., Tchernov, E. & Nevo, E. (1988). Origine du commensalisme de la souris domestique (Mus musculus domesticus) vis-à-vis de l'homme. Comptes Rendus de l'Académie des Sciences, Paris, Série III 307, 517522.Google Scholar
Auffray, J.-C., Vanlerberghe, F. & Britton-Davidian, J. (1990 a). The house mouse progression in Eurasia: a palaeontological and archaeozoological approach. Biological Journal of the Linnean Society 41, 1325.CrossRefGoogle Scholar
Auffray, J.-C., Belkhir, K., Cassaing, J., Britton-Davidian, J. & Croset, H. (1990 b). Outdoor occurrence in Robert-sonian and standard populations of the house mouse. Vie et Milieu 40, 111118.Google Scholar
Babayants, G. A. & Karapetyan, A. B. (1970). Développement autogène des ovaires chez certaines espèces de moustiques de Turkeménie. Meditsinskaya Parazitologiya I Parazitazitarnye Bolezni, USSR 39, 2429.Google Scholar
Barr, A. R. (1981). The Culex pipiens complex. In Cytogenetics and Genetics of Vectors (ed. Pal, R., Kitzmiller, J. B. and Kanda, T.), pp. 123136. Tokyo: Elsevier Biomedical.Google Scholar
Britton-Davidian, J., Nadeau, J. H., Croset, H. & Thaler, L. (1989). Genetic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty). Genetical Research 53, 2944.CrossRefGoogle ScholarPubMed
Chevillon, C., Pasteur, N., Marquine, M., Heyse, D. & Raymond, M. (1995). Population structure and dynamics of selected genes in the mosquito Culex pipiens. Evolution (in the press).CrossRefGoogle Scholar
Christophers, S. R. (1911). The development of the egg follicule in anophelines. Paludism 2, 7378.Google Scholar
Clements, A. N. (1992). The Biology of Mosquitoes. Vol. 1. Development, Nutrition and Reproduction. London: Chapman & Hall.Google Scholar
Dancesco, P., Chadli, A., Kchouk, M. & Horak, M. (1975). A propos d'un biotype saisonnier hivernal de Culex pipiens autogenicus. Bulletin de la Société de Pathologie Exotique Séance du 14 Mai 503–507.Google Scholar
Dobrotworsky, N. V. (1967). Hybridization in the Culex pipiens complex. Bulletin of the World Health Organisation 37, 267270.Google ScholarPubMed
Fisher, R. A. (1970). Statistical Methods for Research Workers. 14th ed.Edinburgh: Olivier and Boyd.Google Scholar
Ganem, G. A. (1991). A comparative study of different populations of Mus musculus domesticus: emotivity as an index of adaptation to commensalism. Comparative Biochemistry and Physiology 99A, 531536.Google Scholar
Garnier-Gere, P. & Dillmann, C. (1992). A computer program for testing pairwise linkage disequilibria in subdivided populations. Journal of Heredity 83, 239.CrossRefGoogle ScholarPubMed
Guo, S. W. & Thompson, E. (1992). Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48, 361372.CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1954). An exact test for randomness of mating. Genetics 52, 631635.Google Scholar
Harbach, R. E., Harrison, B. A. & Gad, A. M. (1986). Culex molestus Forskal (Diptera: Culicidae): neotype designation, description, variation & taxonomic status. Proceedings of the Entomology Society, Washington 86, 521542.Google Scholar
Hartl, D. L. & Clarke, A. G. (1989). Principles of Population Genetics. Sunderland, MA: Sinauer Publishers.Google Scholar
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 6570.Google Scholar
Ishii, T. (1983). Reproductive traits of an intermediate strain between Culex pipiens pallens and Cx. pipiens molestus (preliminary report). Akaieka Newsletter 7, 1520.Google Scholar
Knight, K. L. & Abdel Malek, A. (1951). A morphological and biological study of Culex pipiens in the Cairo area of Egypt (Diptera-Culicidae). Bulletin of the Society Fouad 1er Entomolology 35, 175185.Google Scholar
Louis, E. J. & Dempster, E. R. (1987). An exact test for Hardy–Weinberg and multiple alleles. Biometrics 43, 805811.CrossRefGoogle ScholarPubMed
Mattingly, P. F. (1967). The systematics of the Culex pipiens complex. Bulletin of the World Health Organisation 37, 257261.Google ScholarPubMed
Mattingly, P. F., Rozemboom, L. E., Knight, K. L., Laven, H., Drummond, S. R., Christophers, S. R. & Shute, P. G. (1951). The Culex pipiens complex. Transactions of the Royal Entomology Society of London 102, 7261.Google Scholar
Miles, S. J. & Paterson, H. E. (1979). Protein variation and systematics in the Culex pipiens group of species. Mosquito Systematics 11, 187202.Google Scholar
Njiokou, F., Delay, B., Bellec, C., N'Goran, E. K., Yapi, G. & Jarne, P. (1994). Population genetic structure of the schistosome-vector snail Bulinus globosus: examining the role of genetic drift, migration and human activities. Heredity 72, 488497.CrossRefGoogle ScholarPubMed
Nudelman, S., Galun, R., Kitron, U. & Spielman, A. (1988). Physiological characteristics of Culex pipiens populations in the Middle East. Medical and Veterinary Entomology 2, 161169.CrossRefGoogle ScholarPubMed
Ohta, T. (1982). Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proceedings of the National Academy of Science U.S.A. 79, 19401944.CrossRefGoogle ScholarPubMed
Pasteur, N., Marquine, M., Failloux, A.-B., Chevillon, C., Rousset, F. & Raymond, M. (1995). The role of passive migration in the dispersal of resistance genes in Culex pipiens quinquefasciatus from French Polynesia. Genetical Research (in the press).CrossRefGoogle Scholar
Pasteur, N., Pasteur, G., Catalan, J., Bonhomme, F. & Britton-Davidian, J. (1988). Practical Isozyme Genetics. Chichester, England: John Willey and Sons/Ellis Horwood Ltd.Google Scholar
Pasteur, N., Rioux, J.-A., Guilvard, E. & Pech-Perieres, J. (1977). Nouvelle mention pour le Midi méditerranéen, de populations naturelles anautogènes et sténogames de Culex pipiens pipiens L. Annales de Parasitologie Humaine Comparée 52, 205210.CrossRefGoogle ScholarPubMed
Pasteur, N., & Sinègre, G. (1978). Autogenesis vs. esterase polymorphism and chlorpyrifos (Dursban) resistance in Culex pipiens pipiens L. Biochemical Genetics 16, 941943.CrossRefGoogle ScholarPubMed
Pasteur, N., Singègre, G. & Gabinaud, A. (1981). Est-2 and Est-3 polymorphisms in Culex pipiens L. from southern France in relation to organophosphate resistance. Biochemical Genetics 19, 499508.CrossRefGoogle Scholar
Qiao, C.-L. & Raymond, M. (1995). A same esterase B1 haplotype is amplified in insecticide resistant mosquitoes of the Culex pipiens complex from the Americas and China. Heredity 74, 349–345.CrossRefGoogle ScholarPubMed
Raymond, M., Callaghan, A., Fort, P. & Pasteur, N. (1991). Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350, 151153.CrossRefGoogle ScholarPubMed
Raymond, M. & Marquine, M. (1994). Evolution of insecticide resistance in Culex pipiens populations: the Corsican paradox. Journal of Evolutionary Biology 7, 315337.CrossRefGoogle Scholar
Raymond, M., Gaven, B., Pasteur, N. & Sinègre, G. (1985). Etude de la résistance au chlorpyrifos à partir de quelques souches du moustique Culex pipiens L. du sud de la France. Génétique Séléction Evolution 17, 7388.CrossRefGoogle Scholar
Raymond, M. & Rousset, F. (1995 a). An exact test for population differentiation. Evolution (in the press).CrossRefGoogle Scholar
Raymond, M. & Rousset, F. (1995 b). GENEPOP (version 1·2): a population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Rioux, J. A. & Pech, J. (1961). Apparition de l'autogénèse dans un élevage de Culex pipiens berbericus Roubaud. Comptes Rendus de la Société de Biologie 155, 343344.Google Scholar
Rivet, Y., Marquine, M. & Raymond, M. (1993). French mosquito populations now invaded by insecticide resistant A2–B2 esterases. Biological Journal of the Linnean Society 49, 249255.CrossRefGoogle Scholar
Roubaud, E. (1929). Cycle autogène d'attente et générations hivernales suractives inapparentes chez le moustique commun, Culex pipiens. Comptes Rendus de l'Académie des Sciences Paris 188, 735738,Google Scholar
Roubaud, E. (1933). Essai synthétique sur la vie du moustique commun (Culex pipiens). L'évolution humaine et les adaptations biologiques du moustique. Annales des Sciences Naturelles (Zoologie) 16, 5168.Google Scholar
Roubaud, E. & Ghelelovitch, S. (1956). Observations sur le moustique anthropophile méditerranéan du groupe pipiens, Culex berbericus Roub. Comptes Rendus de l'Académie des Sciences Paris 242, 29002903.Google Scholar
Rousset, F. & Raymond, M. (1995). Testing heterozygote excess and deficiency. Genetics 140 (in the press).CrossRefGoogle ScholarPubMed
Said, K. & Britton-Davidian, J. (1991). Genetic differentiation and habitat partition of Robertsonian house mouse populations (Mus musculus domesticus) of Tunisia. Journal of Evolutionary Biology 3, 409427.CrossRefGoogle Scholar
Slatkin, M. (1985). Rare alleles as indicators of gene flow. Evolution 39, 5365.CrossRefGoogle ScholarPubMed
Smittle, B. J., Lowe, R. E., Ford, H. R. & Wedihaas, D. E. (1973). Techniques for 32P labelling and assay of egg rafts from field collected Culex pipiens quinquefasciatus Say. Mosquito News 33, 215220.Google Scholar
Spielman, A. (1957). The inheritance of autogeny in the Culex pipiens complex of mosquitoes. American Journal of Hygiene 65, 404425.Google ScholarPubMed
Subra, R. (1972). Etudes écologiques sur Culex pipiens fatigans Wiedmann, 1828 (Diptera, Culicidae) dans une zone urbaine de savane soudanienne ouest-africaine. Longévités et déplacements d'adultes marqués avec des poudres fluorescentes. Cahiers de l'ORSTOM, série Entomologie et Parasitologie 10, 336.Google Scholar
Tsuji, N. (1989). Autogenous and anautogenous mosquitoes: the effect of survival rate during blood feeding. Acta Eruditorium 8, 114.Google Scholar
Tsuji, Z., Okazawa, T. & Yamamura, N. (1990). Autogenous and anautogenous mosquitoes: a mathematical analysis of reproductive strategies. Journal of Medical Entomology 27, 446453.CrossRefGoogle ScholarPubMed
Urbanelli, S., Cianchi, R., Petrarca, V., Sabatinelli, G., Coluzzi, M. & Bullini, L. (1985). Adattamento all'ambiante urbano nella zanzara Culex pipiens (Diptera, Culicidae). In Ecologia (ed. Moroni, A. and Ravera, O.), pp 305316. Parma, Italy: Zara.Google Scholar
Vinogradova, E. B. (1961). About the biological isolation between subspecies in Culex pipiens L. (Diptera, Culicidae). Review of Entomology, URSS 40, 6375.Google Scholar
Vinogradova, E. B. (1992). Morphology, ecology and control of the Culex pipiens complex in USSR. Akaieka Newsletter 15, 110.Google Scholar
Wade, M. J. & McCauley, D. E. (1990). Extinction and recolonisation: their effects on the genetic differentiation of local populations. Evolution 42, 9951005.CrossRefGoogle Scholar
Wahlund, T. (1928). Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11, 65106.CrossRefGoogle Scholar
Weidhaas, D. E., Smittle, B. J., Patterson, R. S., Lowe, R. E. & Lofgren, C. S. (1973). Survival, reproductive capacity, and migration of adult Culex pipiens quinquefasciatus Say. Mosquito News 33, 8387.Google Scholar
Weir, B. S. (1990). Genetic data analysis. Sunderland, MA, USA: Sinauer Publishers.Google Scholar
Weir, B. S. & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Wright, S. (1969). Evolution and the Genetics of Populations. Vol. 2. The theory of gene frequencies. Chicago, IL, USA: University Chicago Press.Google Scholar
Yates, F. (1955). A note on the application of the combination of probabilities test to a set of 2 × 2 tables. Biometrika 42, 404411.Google Scholar