Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T08:02:48.411Z Has data issue: false hasContentIssue false

Clonal relationships among naturally occurring nicotinamide-requiring Salmonella typhimurium

Published online by Cambridge University Press:  14 April 2009

Ruth M. Barker
Affiliation:
Department of Medical Microbiology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, Scotland
A. A. Yousuf
Affiliation:
Department of Medical Microbiology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, Scotland
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Salmonella typhimurium strains of biotype 25x have been shown in transductional cross experiments to be clonal in the Nad character. The ancestral bacterium, probably of biotype 25a, mutated to a requirement for nicotinamide and subsequently diversified in phage type and secondary biotype characters. Such a sequence of events indicates interconversion among phage types 6, 16, 46, 49, 73, 76 and 135. Strains in biotypes 1x, 9ix, 17x, 17dx, 19dx and 25hix yielded Nad+ recombinants in interbiotype crosses, suggesting that each originated as an independent mutant line.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Anderson, E. S. (1971). The modern ecological study of Salmonella typhimurium infection. In Recent Advances in Microbiology (ed. Pérez-Miravete, A. and Peláez, D.), p. 381. Xth International Congress for Microbiology, Mexico City, 1970.Google Scholar
Anderson, E. S., Ward, L. B., De Saxe, M. J. & De Sa, J. D. H. (1977 a). Bacteriophage-typing designations of Salmonella typhimurium. Journal of Hygiene 78, 297300.CrossRefGoogle ScholarPubMed
Anderson, E. S., Threlfall, E. J., Carr, J. M., McConnell, M. M. & Smith, H. R. (1977 b). Clonal distribution of resistance plasmid-carrying Salmonella typhimurium, mainly in the Middle East. Journal of Hygiene 79, 425448.CrossRefGoogle ScholarPubMed
Anderson, E. S., Ward, L. R., De Saxe, M. J., Old, D. C., Barker, R. & Duguid, J. P. (1978). Correlation of phage type, biotype and source in strains of Salmonella typhimurium. Journal of Hygiene 81, 203217.CrossRefGoogle ScholarPubMed
Barker, R. & Old, D. C. (1979). Biotyping and colicine typing of Salmonella typhimurium strains of phage type 141 isolated in Scotland. Journal of Medical Microbiology 12, 265276.CrossRefGoogle ScholarPubMed
Barker, R. M. & Old, D. C. (1980). Biotypes of strains of Salmonella typhimurium of phage types 49, 204 and 193. Journal of Medical Microbiology 13, 369371.CrossRefGoogle Scholar
Barker, R., Old, D. C. & Sharp, J. C. M. (1980). Phage type/biotype groups of Salmonella typhimurium in Scotland 1974–6: variation during spread of epidemic clones. Journal of Hygiene 84, 115125.Google ScholarPubMed
Davis, B. D. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 1728.CrossRefGoogle ScholarPubMed
Duguid, J. P., Anderson, E. S., Alfredsson, G. A., Barker, R. & Old, D. C. (1975). A new biotyping scheme for Salmonella typhimurium and its phylogenetic significance. Journal of Medical Microbiology 8, 149166.CrossRefGoogle ScholarPubMed
Foster, J. W. & Moat, A. G. (1978). Mapping and characterization of the nad genes in Salmonella typhimurium LT-2. Journal of Bacteriology 133, 775779.CrossRefGoogle ScholarPubMed
Lewis, M. J. & Stocker, B. A. D. (1971). A biochemical subdivision of one phage type of Salmonella typhimurium. Journal of Hygiene 69, 683691.Google ScholarPubMed
Liu, G., Foster, J., Manlapaz-Ramos, P. & Olivera, B. M. (1982). Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium. Journal of Bacteriology 152, 11111116.CrossRefGoogle ScholarPubMed
Morgenroth, A. & Duguid, J. P. (1968). Demonstration of different mutational sites controlling rhamnose fermentation in FIRN and non-FIRN rha strains of Salmonella typhimurium: an essay in bacterial archaeology. Genetical Research 11, 151169.CrossRefGoogle ScholarPubMed
Old, D. C. (1984). Phylogeny of strains of Salmonella typhimurium. Microbiological Sciences 1, 6972.Google ScholarPubMed
Old, D. C., Da Wes, P. F. H. & Barker, R. M. (1980). Transduction of inositol-fermenting ability demonstrating phylogenetic relationships among strains of Salmonella typhimurium. Genetical Research 35, 215224.CrossRefGoogle ScholarPubMed
Old, D. C. & Duguid, J. P. (1971). Selection of fimbriate transductants of Salmonella typhimurium dependent on motility. Journal of Bacteriology 107, 655658.CrossRefGoogle ScholarPubMed
Old, D. C. & Duguid, J. P. (1979). Transduction of fimbriation demonstrating common ancestry in FIRN strains of Salmonella typhimurium. Journal of General Microbiology 112, 251259.CrossRefGoogle ScholarPubMed
PUBLIC HEALTH LABORATORY SERVICE COMMUNICABLE DISEASE SURVEILLANCE CENTRE (1984). Food poisoning and salmonella surveillance in England and Wales: 1982. British Medical Journal 288, 306308.CrossRefGoogle Scholar
Sanderson, K. E. & Roth, J. R. (1983). Linkage map of Salmonella typhimurium, edition VI. Microbiological Reviews 47, 410453.CrossRefGoogle ScholarPubMed
Stocker, B. A. D. & Edgar, J. B. (1959). Genetics of nicotinamide-requirement in Salmonella typhimurium. Annual Report of the Board of Governors of the Lister Institute, p. 13.Google Scholar
Threlfall, E. J., Ward, L. R. & Rowe, B. (1978). Spread of multiresistant strains of Salmonella typhimurium phage types 204 and 193 in Britain. British Medical Journal ii, 997.CrossRefGoogle Scholar
Threlfall, E. J., Ward, L. R., Ashley, A. S. & Rowe, B. (1980). Plasmid-encoded trimeth-oprim resistance in multiresistant epidemic Salmonella typhimurium phage types 204 and 193 in Britain. British Medical Journal i, 12101211.CrossRefGoogle Scholar