Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T23:47:18.911Z Has data issue: false hasContentIssue false

Chloride channel 2 gene (Clc2) maps to chromosome 16 of the mouse, extending a region of conserved synteny with human chromosome 3q

Published online by Cambridge University Press:  14 April 2009

Andreas Lengeling
Affiliation:
Developmental Biology Unit, University of Bielefeld, D33501 Bielefeld, Federal Republic of Germany. Fax: +49 (521) 106 5654
Monika Gronemeier
Affiliation:
Developmental Biology Unit, University of Bielefeld, D33501 Bielefeld, Federal Republic of Germany. Fax: +49 (521) 106 5654
Melanie Ronsiek
Affiliation:
Developmental Biology Unit, University of Bielefeld, D33501 Bielefeld, Federal Republic of Germany. Fax: +49 (521) 106 5654
Astrid Thiemann
Affiliation:
Centre of Molecular Neurobiology, University of Hamburg, Martinistraase 52, D-20246 Hamburg, Federal Republic of Germany. Fax: +49(40)4717 4839
Thomas J. Jentsch
Affiliation:
Centre of Molecular Neurobiology, University of Hamburg, Martinistraase 52, D-20246 Hamburg, Federal Republic of Germany. Fax: +49(40)4717 4839
Harald Jockusch
Affiliation:
Developmental Biology Unit, University of Bielefeld, D33501 Bielefeld, Federal Republic of Germany. Fax: +49 (521) 106 5654
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Clc2 gene of the mouse codes for the ubiquitously expressed chloride channel ClC-2, a member of a family of at least seven voltage gated chloride channels, some of which are implicated in hereditary diseases. Using a mouse interspecies back-cross panel, we have mapped Clc2 to Chr 16, proximal to the somatostatin gene Smst, extending a region of documented conserved synteny to human Chr 3q.

Type
Short Paper
Copyright
Copyright © Cambridge University Press 1995

References

Abdalla, J. A., Casley, W. L., Cousin, H. K., Hudson, A. J., Murphy, E. G., Cornells, F. C., Hashimoto, L. & Ebers, G. C. (1992). Linkage of Thomsen disease to the T-cell-receptor beta (TCRB) locus on chromosome 7q35. American Journal of Human Genetics 51, 579584.Google Scholar
Cid, L. P., Montrose-Rafizadeh, C., Smith, D. I., Guggino, W. B. & Cutting, G. R. (1995). Cloning of a putative human voltage-gated chloride channel (ClC2) cDNA widely expressed in human tissues. Human Molecular Genetics 4, 407413.CrossRefGoogle Scholar
Dietrich, W. F., Miller, J. C., Steen, R. G., Merchant, M., Damron, D., Nahf, R., Gross, A., Joyce, D. C., Wessel, M., Dredge, R. D., Marquis, A., Stein, L. D., Goodman, N., Page, D. C. & Lander, E. S. (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genetics 7, 220245.CrossRefGoogle Scholar
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Fisher, S. E., Black, G. C. M., Lloyd, S. E., Hatchwell, E., Wrong, O., Thakker, R. V. & Craid, I. W. (1994). Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Human Molecular Genetics 3, 20532059.Google ScholarPubMed
Jentsch, T. J. (1994). Molecular physiology of anion channels. Current Opinion in Cell Biology 6, 600606.CrossRefGoogle ScholarPubMed
Jentsch, T. J., Steinmeyer, K. & Schwarz, G. (1990). Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348, 510514.CrossRefGoogle ScholarPubMed
Jockusch, H. (1990 a). Muscle fibre transformations in myotonic mouse mutants. In The Dynamic State of Muscle Fibers (ed. Pette, D.), pp. 429443. Berlin: W. de Gruyter.CrossRefGoogle Scholar
Jockusch, H. (1990 b). Molecular aspects of myotonia: the ADR mouse as a model. Journal of Neurological Sciences 98, (Suppl.), 9.Google Scholar
Kaupmann, K., Simon-Chazottes, D., Guénet, J.-L. & Jockusch, H. (1992). Wobbler, a mutation affecting motoneuron survival and gonadal functions in the mouse, maps to proximal chromosome 11. Genomics 13, 3943.CrossRefGoogle ScholarPubMed
Kawasaki, M., Uchida, S., Monkawa, T., Miyawaki, A., Mikoshiba, K., Marumo, F. & Sasaki, S. (1994). Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron 12, 597604.CrossRefGoogle ScholarPubMed
Kieferle, S., Fong, P., Bens, M., Vandewalle, A. & Jentsch, T. J. (1994). Two highly homologous members of the CIC chloride channel family in both rat and human kidney. Proceedings of the National Academy of Sciences, USA 91, 69436947.CrossRefGoogle Scholar
Koch, M. C., Steinmeyer, K., Lorenz, C., Ricker, K., Wolf, F., Otto, M., Zol, B., Lehmann-Horn, F., Grzeschik, K.-H. & Jentsch, T. J. (1992). The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257, 797800.CrossRefGoogle ScholarPubMed
Lyon, M. F. & Kirby, M. C. (1995). Mouse chromosome atlas. Mouse Genome 93, 2366.Google Scholar
Mehrke, G., Brinkmeier, H. & Jockusch, H. (1988). The myotonic mouse mutant ADR: electrophysiology of the muscle fiber. Muscle and Nerve 11, 440446.CrossRefGoogle ScholarPubMed
Pearson, P., Francomano, C., Foster, P., Bocchini, C., Li, P. & McKusick, V. (1994). The status of online Mendelian inheritance in man (OMIM) medio 1994. Nucleic Acids Research 22, 34703473.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory Press.Google Scholar
Shen, L.-P. & Rutter, W. J. (1984). Sequence of the human somatostatin I gene. Science 224, 168225.CrossRefGoogle ScholarPubMed
Slegtenhorst, M. A.Van Bassi, M. T., Borsani, G., Wapenaar, M. C., Ferrero, G. B., de Concillis, L., Rugaril, E. I., Grillo, A., Franco, B., Zoghbi, H. Y. & Ballabio, A. (1994). A gene from the Xp22.3 region shares homology with voltage-gated chloride channels. Human Molecular Genetics 3, 547552.CrossRefGoogle ScholarPubMed
Steinmeyer, K., Klocke, R., Ortland, C., Gronemeier, M., Jockusch, H., Gründer, S. & Jentsch, T. J. (1991 a). Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354, 304308.CrossRefGoogle ScholarPubMed
Steinmeyer, K., Ortland, C. & Jenlsch, T. J. (1991 b). Primary structure and functional expression of developmentally regulated skeletal muscle chloride channel. Nature 354, 301304.CrossRefGoogle ScholarPubMed
Thiemann, A., Gründer, S., Pusch, M. & Jentsch, T. I. (1992). A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 5760.CrossRefGoogle ScholarPubMed