Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T00:17:01.210Z Has data issue: false hasContentIssue false

cDNA sequence and chromosomal localization of the mouse parvalbumin gene, Pva

Published online by Cambridge University Press:  14 April 2009

Ch. Zühlke
Affiliation:
Genetics Unit, University of Bielefeld, D-4800 Bielefeld 1, FRG
F. Schöffl*
Affiliation:
Genetics Unit, University of Bielefeld, D-4800 Bielefeld 1, FRG
H. Jockusch
Affiliation:
Developmental Biology Unit, University of Bielefeld, D-4800 Bielefeld 1, FRG
D. Simon
Affiliation:
Unité de Génétique des Mammifères, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
J.-L. Guénet
Affiliation:
Unité de Génétique des Mammifères, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
*
* To whom correspondence should be addressed.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the homozygous condition, the mutation adr (arrested development of righting response) of the mouse causes a myotonia and a drastic reduction of the Ca2+-binding protein parvalbumin (PV) in fast muscles. Using a rat PV probe, a mouse cDNA clone was isolated from a λgt11 wild-type fast-muscle library and its nucleotide sequence was determined. The protein coding and the 3′ non-translated regions of the mouse gene show extensive homology with the rat PV gene. The result of Southern blot hybridization is consistent with a single copy gene for parvalbumin. Restriction fragment length polymorphisms (RFLPs) between Mus musculus domesticus (e.g. C57BL/6) and Mus spretus (SPE) were detected with the enzymes Eco RI, Pst I, and Sst I. The restriction fragment patterns of DNA samples from 65 individual offspring of (C57BL/6 × SPE)F1 × C57BL/6 backcrosses were tested with the PV probe and matched, for linkage detection, to pre-existing patterns established with various RFLP probes on the same samples. A co-distribution of PV-RFLPs with Pvt-1 and Mlvi-2, which had been localized on chromosome 15, was detected. Thus, the structural gene for PV, designated Pva, maps to chromosome 15 of the mouse whereas the adr mutation shows no linkage with markers on this chromosome. Gene locus homology between chromsome 15 of the mouse and chromosome 22 of man (which carries the human PV gene) is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Adolph, S., Strauss, P. G., Hameister, H. & Vogel, W. (1987). Physical gene map of murine chromsome 15. Mouse News Letter 79, 56.Google Scholar
Avner, P., Amar, L., Dandalo, L. & Guénet, J. L. (1988). Genetic analysis of the mouse using interspecific crosses. Trends in Genetics 4 (1), 18.CrossRefGoogle ScholarPubMed
Banerjee, M., Wiener, F., Spira, J., Babonits, M., Nilsson, M. G., Sumegi, J. & Klein, G. (1985). Mapping of the c-myc, pvt-1 and immunglobulin kappa genes, in relation to the mouse plasmacytoma-associated variant (6; 15) trans-location breakpoint. EMBO Journal 4, 3183.CrossRefGoogle Scholar
Berchtold, M. W. (1988). The rat parvalbumin gene. In Calcium and calcium binding proteins, p. 40. Springer-Verlag.CrossRefGoogle Scholar
Berchtold, M. W., Epstein, P., Beaudet, A. L., Payne, M. E., Heizmann, C. W. & Means, A. R. (1987). Structural organization and chromosomal assignment of the parvalbumin gene. Journal of Biological Chemistry 262, (18) 8696.CrossRefGoogle ScholarPubMed
Berchtold, M. W. & Means, A. R. (1985). The Ca2+-binding protein parvalbumin: molecular cloning and developmental regulation of mRNA abundance. Proceedings of the National Academy of Sciences, USA 82, 1414.CrossRefGoogle ScholarPubMed
Chirgwin, J. M., Przybyla, A. E., MacDonald, R. & Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294.CrossRefGoogle ScholarPubMed
Coffee, C. J. & Bradshaw, R. A. (1973). Carp muscle calcium-binding protein (I). Journal of Biological Chemistry 248, 3305.CrossRefGoogle ScholarPubMed
Davis, R. W., Botstein, D. & Roth, J. R. (1980). Advanced Bacterial Genetics: A Manual for Genetic Engineering. Cold Spring Harbor Laboratory.Google Scholar
Enfield, D. L., Ericsson, L. H., Blum, H. E., Fischer, E. H. & Neurath, H. (1975). Amino-acid sequence of parvalbumin from rabbit skeletal muscle. Proceedings of the National Academy of Sciences, USA 72, 1309.CrossRefGoogle ScholarPubMed
Epstein, P., Means, A. R. & Berchtold, M. W. (1986). Isolation of a rat parvalbumin gene and full length cDNA. Journal of Biological Chemistry 261, 5886.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 6.CrossRefGoogle ScholarPubMed
Gubler, U. & Hoffman, B. J. (1983). A simple and very efficient method for generating cDNA libraries. Gene 25, 263.CrossRefGoogle ScholarPubMed
Guénet, J. L. (1986). The contribution of wild derived mouse inbred strains to gene mapping methodology. Current topics in Microbiology and Immunology 127, 119.Google ScholarPubMed
Heizmann, C. W., Berchtold, M. W. & Rowlerson, A. M. (1982). Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proceedings of the National Academy of Sciences, USA 79, 7243.CrossRefGoogle ScholarPubMed
Heller, A. H., Eicher, E. M., Hallet, M. & Sidman, R. L. (1982). Myotonia, a new inherited muscle disease in mice. Journal of Neuroscience 2, 924.CrossRefGoogle ScholarPubMed
Huynh, T. V., Young, R. A. & Davis, R. W. (1985). Construction and screening cDNA libraries in λgt10 and λgt11. In: DNA Cloning: A Practical Approach (ed. Glover, D. M.). IRL Press.Google Scholar
Jockusch, H., Bertram, K. & Schenk, S. (1988 b). The genes for two neuromuscular diseases of the mouse, ‘arrested development of righting response’, adr, and ‘myotonia’, mto, are allelic. Genetical Research, Cambridge 52, 203.CrossRefGoogle ScholarPubMed
Jockusch, H., Reininghaus, J., Stuhfauth, I. & Zippel, M. (1988 a). Reduction of myosin-light-chain phosphorylation and of parvalbumin content in myotonic mouse muscle and its reversal by tocainide. European Journal of Biochemistry 171, 101.CrossRefGoogle ScholarPubMed
Kaplan, J.-C., Aurias, A., Julier, C., Prieur, M., Szanert, M.-F. (1987). Human chromosome 22. Journal of Medical Genetics 24, 65.CrossRefGoogle ScholarPubMed
Kaplan, J.-C. & Carritt, A. (1987). Chromosome 22. Human Gene mapping 9. Cytogenetics and Cell Genetics 46, 260.Google Scholar
Klug, G., Reichmann, H. & Pette, D. (1985). Decreased parvalbumin contents in skeletel muscles of C57/6J(dy2j /dy2j) dystrophic mice. Muscle and Nerve 8, 576.CrossRefGoogle Scholar
Kluxen, F. W., Schöffl, F., Berchtold, M. W. & Jockusch, H. (1988). Opposite regulation of. the mRNAs for parvalbumin and p19/6.8 in myotonic mouse muscle. European Journal of Biochemistry 176, 153.CrossRefGoogle ScholarPubMed
Kozak, C. A., Strauss, P. G. & Tsichlis, P. N. (1985). Genetic mapping of a cellular DNA region involved in induction of thymic lymphomas (Mlvi-1) to mouse chromosome 15. Molecular and Cellular Biology 5, 894.Google ScholarPubMed
Kretsinger, R. H. & Nockolds, C. E. (1973). Carp muscle calcium-binding protein (II). Journal of Biological Chemistry 248, 3313.CrossRefGoogle ScholarPubMed
Leberer, E. & Pette, D. (1986). Neural regulation of parvalbumin expression in mammalian skeletal muscle. Biochemical Journal 235, 67.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molcular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory.Google Scholar
Mehrke, G., Brinkmeier, H. & Jockusch, H. (1988). The myotonic mouse mutant ADR: electrophysiology of the muscle fiber. Muscle and Nerve 11, 440.CrossRefGoogle ScholarPubMed
Müntener, M., Rowlerson, A. M., Berchtold, M. W. & Heizmann, C. W. (1987). Changes in the concentration of the calcium-binding parvalbumin in cross-reinervated rat muscles. Journal of Biological Chemistry 262, 465.CrossRefGoogle ScholarPubMed
Peters, J. (1988). Mouse gene list. Mouse News Letter 80, 7.Google Scholar
Reininghaus, J., Füchbauer, E. M., Bertram, K. & Jockusch, H. (1988). The myotonic mouse mutant ADR: physiological and histochemical properties of muscle. Muscle and Nerve 11, 433.CrossRefGoogle ScholarPubMed
Sanger, R., Nicklen, S. & Cohen, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463.CrossRefGoogle ScholarPubMed
Southern, E. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503.CrossRefGoogle ScholarPubMed
Stuhlfauth, I., Reininghaus, J., Jockusch, H. & Heizmann, C. W. (1984). Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties. Proceedings of the National Academy of Sciences, USA 81, 4814.CrossRefGoogle ScholarPubMed
Watkins, W. J. & Watts, D. C. (1984). Biological features of the new A2G-adr mouse mutant with abnormal muscle function. Laboratory Animals 18, 1.CrossRefGoogle ScholarPubMed
Werner, D., Chemla, Y. & Herzberg, M. (1984). Isolation of poly(A).+ RNA by paper affinity chromatography. Analytical Biochemistry 141, 329.CrossRefGoogle ScholarPubMed
Weydert, A., Daubas, P., Caravatti, M., Minty, A., Bugaisky, G., Cohen, A., Robert, B. & Buckingham, M. (1983). Sequential accumulation of mRNAs encoding different myosing heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. Journal of Biological Chemistry 258, 13867.CrossRefGoogle Scholar
Young, R. A. & Davis, R. W. (1983 a). Yeast RNA polymerase II genes: isolation with antibody probes. Science 222, 778.CrossRefGoogle ScholarPubMed
Young, R. A. & Davis, R. W. (1983 b). Efficient isolation of genes by using antibody probes. Proceedings of the National Academy of Sciences, USA 80, 1194.CrossRefGoogle ScholarPubMed
Zühlke, Ch., Schöffl, F., Jockusch, H., Simon, D., Guénet, J. L. (1988). The parvalbumin gene Pva maps to chromsome 15 of the mouse. Mouse News Letter 80, 149.Google Scholar