Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T00:02:15.492Z Has data issue: false hasContentIssue false

The case for somatic crossing over in the mouse

Published online by Cambridge University Press:  14 April 2009

Hans Grüneberg
Affiliation:
University College, London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A review is given of published accounts of mosaics in mice and other rodents, of mutations and of certain unexplained events. The cumulative weight of evidence makes a strong case for the existence of somatic crossing over in the laboratory rodents.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Bhat, N. R. (1949). A dominant mutant mosaic house mouse. Heredity, Lond. 3, 243248.CrossRefGoogle Scholar
Billingham, R. E. & Silvers, W. K. (1960). The melanocytes of mammals. Q. Rev. Biol. 35, 140.CrossRefGoogle ScholarPubMed
Carter, T. C. (1952). A mosaic mouse with an anomalous segregation ratio. J. Genet. 51, 16.CrossRefGoogle Scholar
Castle, W. E. (1922). On a non-transmissible tri-color variation in rats. Carnegie Inst. Wash., Publ. No. 320, pp. 5154.Google Scholar
Castle, W. E. (1929). A mosaic (intense-dilute) coat pattern in the rabbit. J. exp. Zool. 52, 471480.CrossRefGoogle Scholar
Castle, W. E., Gates, W. H., Reed, S. C. & Snell, G. D. (1936). Identical twins in a mouse cross. Science, N.Y. 84, 581.CrossRefGoogle Scholar
Castle, W. E. & Phillips, J. C. (1914). Piebald rats and selection. Carnegie Inst. Wash., Publ. No. 195, pp. 54.Google Scholar
Cloudman, A. M. & Bunker, L. E. Jr (1945). The varitint-waddler mouse. A dominant mutation in Mus musculus. J. Hered. 36, 259263.Google Scholar
Curtis, M. R. & Dunning, W. F. (1940). An independent recurrence of the blue mutation in the Norway rat and a blue-black mosaic. J. Hered. 31, 219222.CrossRefGoogle Scholar
Dahlberg, J. (1959). A reverse mutation in the house mouse. J. Hered. 50, 248252.Google Scholar
Dickie, M. M. (1954). The tortoise shell house mouse. J. Hered. 45, 158, 190.CrossRefGoogle Scholar
Dickie, M. M. (1962). A new viable yellow mutation in the house mouse. J. Hered. 53, 8486.CrossRefGoogle Scholar
Dunn, L. C. (1934). Analysis of a case of mosaicism in the house-mouse. J. Genet. 29, 317326.Google Scholar
Falconer, D. S. (1951). Two new mutants, ‘Trembler’ and ‘reeler’, with neurological actions in the house mouse (Mus musculus L.). J. Genet. 50, 192201.CrossRefGoogle ScholarPubMed
Falconer, D. S. (1953). Total sex-linkage in the house mouse. Z. indukt. Abstamm.- u. VererbLehre, 85, 210219.Google Scholar
Fankhauser, G. & Humphrey, R. R. (1954). Chromosome number and development of progeny of triploid axolotl males crossed with diploid females. J. exp. Zool. 126, 3358.CrossRefGoogle Scholar
Feldman, H. W. (1935). A mosaic (dark-eyed intense-pink-eyed dilute) coat colour of the house mouse. J. Genet. 30, 383388.CrossRefGoogle Scholar
Fisher, R. A. (1929). Note on a tricolour (mosaic) mouse. J. Genet. 23, 7781.Google Scholar
Fraser, A. S., Sobey, S. & Spicer, C. C. (1953). Mottled, a sex-modified lethal in the house mouse. J. Genet. 51, 217221.CrossRefGoogle Scholar
Fraser, F. C. (1946). The expression and interaction of hereditary factors producing hypotrichosis in the mouse: histology and experimental results. Can. J. Res. D, 24, 1025.Google Scholar
Garber, E. D. (1952). ‘Bent-tail’, a dominant, sex-linked mutation in the mouse. Proc. natn. Acad. Sci. U.S.A. 38, 876879.Google Scholar
Glenn-Wolfe, H. (1963). Two unusual mutations affecting pigmentation in the mouse. Proc. XI Intern. Congr. Genet. (The Hague), 1, 251 (Abstr.).Google Scholar
Green, E. L. & Mann, S. J. (1961). Opossum, a semi-dominant lethal mutation affecting hair and other characteristics of mice. J. Hered. 52, 223227.CrossRefGoogle Scholar
Green, M. C. (1961). Himalayan, a new allele of albino in the mouse. J. Hered. 52, 7375.Google Scholar
Grell, Sister Mary (1946). Cytological studies in Culex. I and II. Genetics, 31, 6076, 77–94.CrossRefGoogle Scholar
Grobman, A. B. & Charles, D. R. (1947). Mutant white mice. A new dominant autosomal mutant affecting coat color in Mus musculus. J. Hered. 38, 381384.Google Scholar
Grüneberg, H. (1937). A reverse mutation in the rat (Mus norvegicus). J. Genet. 35, 177181.Google Scholar
Hagedoorn, A. L. (1912). The genetic factors in the development of the house mouse which influence coat colour. Z. indukt. Abstamm.- u. VererbLehre, 6, 97136.Google Scholar
Hoecker, G. (1950). Mutaciones dominantes reversivas en mosaico en la cepa pura de ratones C58 negra. Biológica, Santiago, 12, 2537.Google Scholar
Hollander, W. F. & Gowen, J. W. (1956). An extreme non-agouti mutant in the mouse. J. Hered. 47, 221224.CrossRefGoogle Scholar
Huskins, C. L. (1948). Segregation and reduction in somatic tissues. I. Initial observations in Allium cepa. J. Hered. 39, 311325.Google Scholar
Isherwood, J. E., Strong, L. C. & Quevedo, W. C. Jr (1960). A new mutation of a to a in the mouse. J. Hered. 51, 121, 135, with a correction on p. 166.CrossRefGoogle Scholar
Keeler, C. E. (1931). A probable new mutation to white-belly in the house mouse, Mus musculus. Proc. natn. Acad. Sci. U.S.A. 17, 700703.CrossRefGoogle ScholarPubMed
Klein, E. & Klein, G. (1964). Studies on the mechanism of isoantigenic variant formation in heterozygous mouse tumours. III. Behavior of H-2 antigens D and K when located in the trans position. J. natn. Cancer Inst. 32, 569578.Google Scholar
Little, C. C. (1916). The occurrence of three recognized color mutations in mice. Am. Nat. 50, 335349.Google Scholar
Little, C. C. & Hummel, K. P. (1947). A reverse mutation to a ‘remote’ allele in the house mouse. Proc. natn. Acad. Sci. U.S.A. 33, 4243.Google Scholar
Loosli, R. (1963). Tanoid—a new agouti mutant in the mouse. J. Hered. 54, 2629.CrossRefGoogle Scholar
Lyon, M. F. (1958). Twirler: a mutant affecting the inner ear of the house mouse. J. Embryol. exp. Morph. 6, 105116.Google Scholar
Lyon, M. F. (1960). A further mutation of the mottled type in the house mouse. J. Hered. 51, 116121.Google Scholar
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, Lond. 190, 372373.Google Scholar
Mackensen, J. A. & Stevens, L. C. (1960). Rib fusions, a new mutation in the mouse. J. Hered. 51, 264268.Google Scholar
Macneil, M. (1957). Two different rare events occurring simultaneously in the house mouse. Heredity, Lond. 11, 261264.CrossRefGoogle Scholar
Miller, D. S. & Potas, M. Z. (1955). Cordovan, a new allele of black and brown color in the mouse. J. Hered. 46, 293296.CrossRefGoogle Scholar
Morgan, T. H. (1914). Multiple allelomorphs in mice. Am. Nat. 48, 449458.Google Scholar
Morgan, W. C. (1950). A new tail-short mutation in the mouse whose lethal effects are conditioned by the residual genotypes. J. Hered. 41, 208215.Google Scholar
Morgan, W. C. (1954). A new Crooked tail mutation involving distinctive pleiotropism. J. Genet. 52, 354373.CrossRefGoogle Scholar
Morgan, W. C. & Holman, S. P. (1955). Eight mosaic mice in thirty years. J. Hered. 46, 4748.Google Scholar
Muller, H. J. (1916). The mechanism of crossing-over. II. Am. Nat. 50, 284305.CrossRefGoogle Scholar
Phillips, R. J. S. (1954). Jimpy, a new totally sex-linked gene in the house mouse. Z. indukt. Abstamm.- u. VererbLehre. 86, 322326.Google Scholar
Phillips, R. J. S. (1960). ‘Lurcher’, a new gene in linkage group XI of the house mouse. J. Genet. 57, 3542.CrossRefGoogle Scholar
Phillips, R. J. S. (1961). ‘Dappled’, a new allele at the Mottled locus in the house mouse. Genet. Res. 2, 290295.Google Scholar
Phillips, R. J. S. (1963). Striated, a new sex-linked gene in the house mouse. Genet. Res. 4, 151153.CrossRefGoogle Scholar
Pickard, J. N. (1929). A brown-and-black rabbit. A possible case of somatic segregation. J. Hered. 20, 483484.CrossRefGoogle Scholar
Pickard, J. N. (1936). A black-blue Dutch rabbit. J. Genet. 33, 337341.Google Scholar
Pincus, G. (1929 a). A mosaic (black-brown) coat pattern in the mouse. J. exp. Zool. 52, 439441.CrossRefGoogle Scholar
Pincus, G. (1929 b). A spontaneous mutation in the house mouse. Proc. natn. Acad. Sci. U.S.A. 15, 8588.CrossRefGoogle ScholarPubMed
Pontecorvo, G. (1959). Trends in Genetic Analysis, pp. X + 145. New York and London: Columbia U.P. and Oxford U.P.Google Scholar
Reed, S. C. (1938). Determination of hair structure. I. The production of waved hair from genetically non-waved cells. J. exp. Zool. 79, 347354.Google Scholar
Robinson, R. (1956). A review of independent and linked segregation in the rabbit. J. Genet. 54, 358369.Google Scholar
Russell, L. B., Mcdaniel, M. N. C. & Woodiel, F. N. (1963). Crossing-over within the a ‘locus’ of the mouse. Genetics, 48, 907 (Abstr.).Google Scholar
Russell, L. B. & Major, M. H. (1956). A high rate of somatic reversion in the mouse. Genetics, 41, 658 (Abstr.).Google Scholar
Russell, L. B. & Major, M. H. (1957). Radiation-induced presumed somatic mutations in the house mouse. Genetics, 42, 161175.Google Scholar
Russell, W. L. & Russell, L. B. (1959). The genetic and phenotypic characteristics of radiation-induced mutations in mice. Radiat. Res. Suppl. 1, 296305.Google Scholar
Schaible, R. H. & Gowen, J. W. (1960). Delimitation of coat pigment areas in mosaic and piebald mice. Genetics, 45, 1010 (Abstr.)Google Scholar
Snell, G. D. (1931). Inheritance in the house mouse, the linkage relations of short-ear, hairless, and Naked. Genetics, 16, 4274.CrossRefGoogle ScholarPubMed
Stern, C. (1936). Somatic crossing over and segregation in Drosophila melanogaster. Genetics, 21, 625730.Google Scholar
Stevens, W. L. (1937). A test for uniovular twins in mice. Ann. Eugen. 8, 7073.Google Scholar
Wallace, M. E. (1954). A mutation or a crossover in the house mouse? Heredity, 8, 89105.Google Scholar
Westergaard, M. (1964). Studies on the mechanism of crossing over. I. Theoretical considerations. C. r. Trav. Lab. Carlsberg, 34, 359405.Google Scholar
Wright, S. & Eaton, O. N. (1926). Mutational mosaic coat patterns of the guinea pig. Genetics, 11, 333351.CrossRefGoogle ScholarPubMed