Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T23:25:49.537Z Has data issue: false hasContentIssue false

Caffeine-resistant mutants of Caenorhabditis elegans

Published online by Cambridge University Press:  14 April 2009

Philip S. Hartman
Affiliation:
Department of Biology, Texas Christian University, Fort Worth, TX 76129
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wild-type Caenorhabditis elegans fails to reach adulthood if L1 larvae are incubated in the presence of 30 mM or greater concentrations of caffeine. Eleven mutants have been isolated in which caffeine has a less pronounced effect on development. The mutations are recessive, define two genes, and have been mapped. The mechanism(s) of resistance is unknown.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Literature cited

Beetham, K. L. & Tolmach, L. J. (1982). Growth and death of HeLa cells in the presence of caffeine. Journal of Cellular Physiology 113, 385397.Google Scholar
Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 7194.Google Scholar
Byerly, L., Cassada, R. C. & Russell, R. L. (1976). The life cycle of the nematode Caenorhabditis elegans. Developmental Biology 51, 2333.Google Scholar
Delvaux, A.-M. & Devoret, R. (1969). The occurrence of suppressors in caffeine-resistant mutants from E. coli K12. Mutation Research 7, 273285.Google Scholar
Dews, P. B. (1982). Caffeine. Annual Review of Nutrition 2, 323341.CrossRefGoogle ScholarPubMed
Fredholm, B. B. (1985). On the mechanism of action of theophylline and caffeine. Acta Medica Scandinavica 217, 149153.CrossRefGoogle ScholarPubMed
Gilbert, S. G., Stavric, B., Klassen, R. D. & Rice, D. C. (1985). The fate of chronically consumed caffeine in the monkey (Macaca fascicularis). Fundamental and Applied Toxocology 5, 578587.Google Scholar
Grigg, G. W. (1968). Caffeine-death in Escherichia coli. Molecular and General Genetics 102, 316335.Google Scholar
Hartman, P. S. & Herman, R. K. (1982). Somatic damage to the X chromosome of the nematode Caenorhabditis elegans induced by gamma radiation. Molecular and General Genetics 187, 116119.CrossRefGoogle Scholar
Hartman, P. S. (1984). UV irradiation of wild type and radiation-sensitive mutants of the nematode Caenorhabditis elegans: fertilities, survival, and parental effects. Photochemistry and Photobiology 39, 169175.Google Scholar
Hartman, P. S. (1985). Epistatic interactions of radiationsensitive (RAD) mutants of Caenorhabditis elegans. Genetics 109, 8193.Google Scholar
Herman, R. K. & Horvitz, H. R. (1980). Genetic analysis of Caenorhabditis elegans. In Nematodes as Biological Models (ed. Zuckerman, B.), pp. 228262. New York: Academic Press.Google Scholar
Hodgkin, J., Horvitz, H. R. & Brenner, S. (1979). Nondisjunction mutants of Caenorhabditis elegans. Genetics 91, 6794.Google Scholar
Horvitz, H. R., Brenner, S., Hodgkin, J. & Herman, R. K. (1979). A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Molecular and General Genetics 175, 129133.Google Scholar
Ishida, R., Kozaki, M. & Takahashi, T. (1985). Caffeine alone causes DNA damage in Chinese hamster ovary cells. Cell Structure and Function 10, 405409.CrossRefGoogle ScholarPubMed
Jagger, J. (1967). Introduction to Research in UV Photobiology, pp. 137139. EngleWood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Keller, C., Calkins, J., Hartman, P. S. & Rupert, C. S. (1986). UV photobiology of the nematode Caenorhabditis elegans: action spectra, absence of photoreactivation and effects of caffeine. Photochemistry and Photobiology (submitted for publication).Google Scholar
Kihlman, B. A. (1977). Historical: discovery and development of structural formulae of caffeine and related compounds. In Caffeine and Chromosomes, pp. 110. Amsterdam: Elsevier.Google Scholar
Klass, M. R. (1983). A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mechanisms of Aging and Development 22, 279286.CrossRefGoogle ScholarPubMed
Klein, K. K. & Deppe, C. S. (1985). Complementation and noncomplementation among nonallelic mutations altering development in Schizophyllum commune. Genetics 109, 333339.Google Scholar
Sarachek, A., Bish, J. T. & Ireland, R. (1970). Relative susceptibilities of caffeine-sensitive and caffeine-resistant strains of Candida albicans to inactivation and mutation by ultraviolet radiation. Archives of Microbiology 74, 244257.Google ScholarPubMed
Sulston, J. E. & Horvitz, H. R. (1981). Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Developmental Biology 82, 4145.Google Scholar
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology 100, 64119.Google Scholar
Timson, J. (1977). Caffeine. Mutation Research 47, 152.CrossRefGoogle ScholarPubMed
Woolfolk, C. A. (1975). Metabolism of N-methylpurines by a Pseudomonas putida strain isolated by enrichment on caffeine as a sole source of carbon and nitrogen. Journal of Bacteriology 123, 10881106.CrossRefGoogle ScholarPubMed