Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T14:13:46.094Z Has data issue: false hasContentIssue false

Biochemical and genetic characterization of esterase-27 (ES-27), the major plasma cholinesterase of the house mouse (Mus musculus)*

Published online by Cambridge University Press:  14 April 2009

O. H. von Deimling*
Affiliation:
Pathologisches Institut, Abteilung für Chemische Pathologie, Universtität Freiburg, D-7800 Freiburg i. Br., Bundesrepublik, Deutschland
A. Gaa
Affiliation:
Pathologisches Institut, Abteilung für Chemische Pathologie, Universtität Freiburg, D-7800 Freiburg i. Br., Bundesrepublik, Deutschland
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Esterase-27A (ES-27A) was characterized in strain A/WySnA by a cascade of seven bands seen after disc electrophoresis of serum and subsequent staining for esterase. ES-27A catalyses the hydrolysis of thiocholine butyrate and is strongly inhibited by 100 μm tetraisopropyl pyrophosphamide (isoOMPA). Hence, the enzyme was concluded to be a cholinesterase EC 3.1.1.8. A heat-labile form termed ES-27B was represented by strain AKR/Han. From a three-point cross (AKR/Han, A/Wy) and a five-point cross (AKR/Han, SEG/1), the gene order on chromosome 3 was concluded to be centromere–Car-2–Es-26–Es-27–Amy-1–Adh-1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Footnotes

*

This work was supported by the Deutsche Forschungs-gemeinschaft (De 315/2). This is Communication no. 68 of a research programme devoted to the cellular distribution, regulation and genetics of non-specific esterases.

References

Aldridge, W. N. (1953). The differentiation of true and pseudo cholinesterase by organo-phosphor compounds. Biochemical Journal 53, 6267.Google Scholar
Allen, R. C. & Moore, D. J. (1966). Sex-associated quantitative differences in the plasma esterases of inbred mice. Endocrinology 78, 655658.Google Scholar
Angel, C. R., Mahin, D. T., Farris, R. D., Woodward, K. T., Yukas, J. & Strober, K. (1967). Heritability of plasma cholinesterase activity in inbred mouse strains. Science 156, 529530.Google Scholar
Bisso, G. M. (1986). Separation of serum cholinesterase molecular forms from three rodent species by gradient polyacrylamide gel electrophoresis. Electrophoresis 7, 237238.Google Scholar
Bog-Hansen, T. C., Teisner, B. & Hau, J. (1983). Affinity electrophoresis with special reference to the microheterogeneity of glycoproteins and identification of ligand binding proteins. In Modern Methods in Protein Chemistry (ed. by Tschesche, H.), pp. 125148, Berlin, New York: de Gruyter.Google Scholar
Bonhomme, F. & Selander, R. K. (1978). Estimating total genie diversity in the house mouse. Biochemical Genetics 16, 287297.CrossRefGoogle Scholar
Bonhomme, F., Benmehdi, F., Britton-Davidian, J. & Martin, S. (1979). Analyse génétique de croisements interspécifiques Mus musculus L. x Mus spretus Lataste: liaison de Adh-1 avec Amy-1 sur le chromosome 3 et de Es-14 avec Mod-1 sur le chromosome 9. Comptes rendus hebdomaires des séances de l' Académie des Sciences 289, Sér. D, 545548.Google Scholar
Britton, J. & Thaler, L. (1978). Evidence for the presence of two sympatric species of mice (genus Mus L.) in Southern France based on biochemical genetics. Biochemical Genetics 16, 213225.Google Scholar
Davidson, K., Tyndall, R. & Clapp, N. K. (1978). Qualitative alterations in plasma esterases in BALB/c mice following administration of diethylnitrosamine. Chemical Biological Interactions 21, 1927.CrossRefGoogle ScholarPubMed
Deimling, O. v. (1985). Priv. Commun. Mouse News Letter 73, 15.Google Scholar
Deimling, O. v. (1986). Priv. Commun. Mouse News Letter 74, 89.Google Scholar
Deimling, O. v., Wassmer, B. & Müller, M. (1984). Esterase-26 (ES-26): Characterization and genetic location on chromosome 3 of an eserine-sensitive esterase of the house mouse (Mus musculus). Biochemical Genetics 22, 11191126.CrossRefGoogle Scholar
Deimling, O. v., Forejt, J. & Wienker, T. F. (1988). Allelic profile at 37 biochemical loci of two inbred strains of the house mouse derived from wild Mus musculus musculus. Laboratory Animals 22, 6166.Google Scholar
Eicher, E. M., Stern, R. H., Womack, J. E., Davisson, M. T., Roderick, Th. & Reynolds, S. C. (1976). Evolution of mammalian carbonic anhydrase loci by tandem duplication: close linkage of Car-1 and Car-2 to the centromere region of chromosome 3 of the mouse. Biochemical Genetics 14, 651660.CrossRefGoogle Scholar
Gomori, G. (1952). Histochemistry of esterase. International Review of Cytology 1, 323335.CrossRefGoogle Scholar
Heymann, L. & Krisch, K. (1967). Phosphorsäure-bis-(p-nitro-phenylester). Ein neuer Hemmstoff mikrosomaler Carboxylesterasen. Zeitschrift für physiologische Chemie 348, 609619.Google Scholar
Hilgers, J., Deimling, O. v., Zutphen, van L. F. M., ten Berg, R., Anand, R. & Festing, M. F. W. (1988). Esterase alleles of inbred mouse strains maintained in The Netherlands. Genetical Research 51, 2940.CrossRefGoogle ScholarPubMed
Holmes, R. S. (1978). Electrophoretic analysis of alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, sorbitol dehydrogenase and xanthine oxidase from mouse tissues. Comparative Biochemistry and Physiology 61B, 339346.Google Scholar
Holt, S. J. (1958). Indigogenic staining methods for esterases. In General Cytochemical Methods, vol. 1 (ed. by Danielli, J. K.), pp. 375398, New York: Academic Press.Google Scholar
International Committee for Standardized Genetic Nomenclature for Mice (1985). Mouse News Letter 72, 2.Google Scholar
Kaplan, R. D., Chapman, V. & Ruddle, F. H. (1973). Electrophoretic variation of α-amylase in two inbred strains of Mus musculus. Journal of Heredity 64, 155157.Google Scholar
Karnovsky, M. J. & Roots, L. (1964). A ‘direct coloring’ thiocholine method for cholinesterase. Journal of Histochemistry and Cytochemistry 12, 219221.CrossRefGoogle Scholar
Kjellstrand, P., Holmquist, B., Alm, P., Kanje, M., Romare, S., Jonsson, I., Mansson, L. & Bjerkemo, M. (1983). Trichlorethylene: further studies of the effects on body and organ weights and plasma butyrylcholinesterase activity in mice. Acta pharmologica et toxicologica 53, 375384.Google Scholar
Lebherz, H. G. (1983). On epigenetically generated isozymes (‘pseudoisozymes’) and their possible biological relevance. In Isozymes: Current Topics in Biological and Medical Research, vol. 7 (ed. Rattazzi, M. C., Scandalios, J. G. and Whitt, G. S.), pp. 203219. New York: Alan R. Liss.Google Scholar
Maurer, H. R. (1971). Disc Electrophoresis and Related Techniques of Polyacrylamide Gel Electrophoresis. Berlin, New York: de Gruyter.Google Scholar
Massoulie, J. & Bon, S. (1982). The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annual Review of Neuroscience 5, 57106.CrossRefGoogle ScholarPubMed
McGadey, J. (1967). Modified indoxyl acetate technique for the histochemical demonstration of non-specific esterases in mouse testis. Journal of Medical Laboratory Technology 24, 126128.Google Scholar
Oki, Y., Manda, M., Takeda, M. & Nishida, S. (1967). Genetic and physiological control of esterases in experimental small animals. III. Hormonal regulation in the activities of pseudocholinesterase isozymes. Tohoku Journal Agriculture Research 17, 201210.Google Scholar
Pantelouris, E. & Arnason, A. (1966). Ontogenesis of serum esterases in Mus musculus. Journal of Embryology and Experimental Morphology 16, 5564.Google ScholarPubMed
Petras, M. L. (1963). Genetic control of a serum esterase component in Mus musculus. Proceedings of the National Academy of Sciences, USA 50, 112116.Google Scholar
Petras, M. L. & Biddle, F. G. (1967). Serum esterases in the house mouse, Mus musculus. Canadian Journal of Genetical Cytology 9, 704710.CrossRefGoogle ScholarPubMed
Popp, R. A. & Popp, D. M. (1962). Inheritance of serum esterases having different electrophoretic patterns. Journal of Heredity 53, 111114.Google Scholar
Ronai, A., Wassmer, B., de Looze, S. & Deimling, O. v. (1985). Immunochemical interrelationships between car-boxylesterase isozymes (EC 3.1.1.1) of the house mouse, Mus musculus. Comparative Biochemistry and Physiology 82 B, 347355.Google Scholar
Tyndall, R. L. & Daniel, J. C. (1975). Alterations in uterine and serum esterases in pregnant mammals. Fertility and Sterility 26, 10981104.Google Scholar