Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T07:46:04.888Z Has data issue: false hasContentIssue false

Behavior of three colicine factors and an R (drug-resistance) factor in Hfr crosses in Salmonella typhimurium

Published online by Cambridge University Press:  14 April 2009

Eugenie Dubnau
Affiliation:
Guinness-Lister Research Unit, Lister Institute of Preventive Medicine, Chelsea Bridge Road, London, S.W.1
B. A. D. Stocker
Affiliation:
Guinness-Lister Research Unit, Lister Institute of Preventive Medicine, Chelsea Bridge Road, London, S.W.1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An LT2 Hfr strain, his metC gal, was crossed to a multiply marked LT2 F line. Analysis of recombinant yields, segregation of unselected markers and interrupted matings indicated injection of the Hfr chromosome in the sequence

The introduction into the Hfr of the colicine factors colI, colE1 and colE2 and the R factor R2 had little or no effect on its fertility. All four factors were transmitted at low frequency to the F population, and to recombinants at higher frequencies (colI 5–30%, colE1 30–80%, colE2 5–30%, R2 0–9%). Transfer of colE1 occurred before 20 min., that of colE2 and colI later than 100 min. Segregation data did not reveal close linkage of any factor to any chromosomal locus, but recombinants with a long stretch of donor chromosome were more likely than others to have acquired colE2 and colI. Nearly all recombinants and F cells which acquired colI or colE2 acquired both, and colE1 also. Most cells which acquired R2 acquired one or more colicine factors. These plasmid associations can be formally represented by transfer of plasmids, independently of the chromosome, in the sequence colE1—(colI, colE2)—R2. Phage P22 grown on the Hfr carrying the four plasmids transduced the tet-r trait of R2 at very low frequency, and the sul-r str-r characters, together, at low frequency. Some of each sort of drug-resistance transductant, but no transductants in respect of chromosomal characters, acquired colEl or colE2 by co-transduction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Alföldi, L., Jacob, F. & Wollman, E. L. (1957). Zygose létale dans les croisements entre souches colicinogènes et non colicinogènes. C.r. hebd. Séanc. Acad. Sci., Paris, 244, 29742976.Google Scholar
Alföldi, L., Jacob, F., Wollman, E. L. & Mazé, R. (1958). Sur le déterminisme génétique de la colicinogènie. C.r. hebd. Séanc. Acad. Sci., Paris, 246, 35313533.Google Scholar
Boice, L. B., & Luria, S. E. (1963). Behaviour of prophage P1 in bacterial matings. 1. Transfer of the defective prophage Pldl. Virology, 20, 147157.CrossRefGoogle Scholar
Clowes, R. C. (1963). Colicin factors and episomes. Genet. Res. 4, 162165.CrossRefGoogle Scholar
Datta, N. (1962). Transmissible drug resistance in an epidemic strain of Salmonella typhi-murium. J. Hyg., Camb. 60, 301310.CrossRefGoogle Scholar
Davis, B. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact. 60, 1728.CrossRefGoogle ScholarPubMed
Dubnau, E. & Stocker, B. A. D. (1964). Genetics of plasmids in Salmonella typhimurium. Nature, Lond. 204, 11121113.CrossRefGoogle ScholarPubMed
Fredericq, P. (1963 a). Linkage of colicinogenic factors with an F agent and with nutritional markers in the chromosome and in an episome of Escherichia coli. Proc. XI Int. Congr. Genet., The Hague, 1, 4243.Google Scholar
Fredericq, P. (1963 b). Colicines et autres bacteriocines. Ergebn. Hyg. Bakt. 37, 115161.Google Scholar
Harada, K., Kameda, M., Suzuki, M. & Mitsuhashi, S. (1963). Transduction of transmissible drug-resistance (R) factors with phage Epsilon. J. Bact. 86, 13321338.CrossRefGoogle ScholarPubMed
Jacob, F. & Wollman, E. L. (1958). Les épisomes, éléments génétiques ajoutés. C.r. hebd. Séanc. Acad. Sci., Paris, 247, 154156.Google Scholar
Johnson, E. M., Falkow, S. & Baron, L. S. (1964). Chromosome transfer kinetics of Salmonella Hfr strains. J. Bact. 88, 395400.CrossRefGoogle ScholarPubMed
Joys, T. M. & Stocker, B. A. D. (1963). Mutation and recombination of flagellar antigen i of Salmonella typhimurium. Nature, Lond. 197, 413414.CrossRefGoogle ScholarPubMed
Lederberg, J. (1952). Cell genetics and hereditary symbiosis. Physiol. Rev. 32, 403430.CrossRefGoogle ScholarPubMed
Lewis, M. J. & Stocker, B. A. D. (1965). Properties of some group E colicine factors. Zentbl. Bakt. ParasitKde, I, 196, 173183.Google Scholar
Loveless, A. & Howarth, S. (1959). Mutation of bacteria at high levels of survival by ethyl methane sulphonate. Nature, Lond. 184, 17801782.CrossRefGoogle ScholarPubMed
Mäkelä, P. H. (1963). Hfr males in Salmonella abony. Genetics, 48, 423429.CrossRefGoogle ScholarPubMed
Meynell, E. & Datta, N. (1966). The relation, of resistance transfer factors to the F-factor (sex factor) of E. coli K12. Genet. Res. 7, 134140.CrossRefGoogle Scholar
Monk, M. & Clowes, R. C. (1964). Transfer of the colicin I factor in Escherichia coli K12 and its interaction with the F fertility factor. J. gen. Microbiol. 36, 365384.CrossRefGoogle Scholar
Nagel de Zwaig, R., Anton, D. N. & Puig, J. (1962). The genetic control of colicinogenic factors E2, I and V. J. gen. Microbiol., 29, 473–184.CrossRefGoogle Scholar
Nagel de Zwaig, R. & Puig, J. (1964). The genetic behaviour of colicinogenic factor E1. J. gen. Microbiol. 36, 311321.CrossRefGoogle Scholar
Ozeki, H. & Stocker, B. A. D. (1958). Transduction by phage of colicinogeny. Heredity, Lond. 12, 986 (abstract).Google Scholar
Ozeki, H., Stocker, B. A. D. & Smith, S. M. (1962). Transmission of colicinogeny between strains of Salmonella typhimurium grown together. J. gen. Microbiol. 28, 671687.CrossRefGoogle Scholar
Puig, J. & Nagel de Zwaig, R. (1964). Étude génétique d'un facteur colicinogène B et de son influence sur la fertilité des croisements chez E. coli K12. Annls Inst. Pasteur, Paris, 107, Suppl. to Nov. no., 115131.Google Scholar
Sanderson, K. E. & Demerec, M. (1965). The linkage map of Salmonella typhimurium. Genetics, 51, 897913.CrossRefGoogle ScholarPubMed
Smith, S. M. & Stocker, B. A. D. (1962). Colicinogeny and recombination. Br. med. Bull. 18, 4651.CrossRefGoogle ScholarPubMed
Smith, S. M., Ozeki, H. & Stocker, B. A. D. (1963). Transfer of colE1 and colE2 during high-frequency transmission of coll in S. typhimurium. J. gen. Microbiol. 33, 231242.CrossRefGoogle Scholar
Stocker, B. A. D., Smith, S. M. & Ozeki, H. (1963). High infectivity of Salmonella typhimurium newly infected by the coll factor. J. gen. Microbiol. 30, 201221.CrossRefGoogle Scholar
Stocker, B. A. D., Zinder, N. D. & Lederberg, J. (1953). Transduction of flagellar characters in Salmonella. J. gen. Microbiol. 9, 410433.CrossRefGoogle ScholarPubMed
Taylor, A. L. & Thoman, M. S. (1964). The genetic map of Escherichia coli K12. Genetics, 50, 659677.CrossRefGoogle Scholar
Watanabe, T. & Fukasawa, T. (1961). Episome-mediated transfer of drug resistance. III. Transduction of resistance factors. J. Bact. 82, 202209.CrossRefGoogle ScholarPubMed
Zinder, N. D. (1960). Sexuality and mating in Salmonella. Science, N.Y. 131, 924926.CrossRefGoogle ScholarPubMed