Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T23:57:54.837Z Has data issue: false hasContentIssue false

Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes

Published online by Cambridge University Press:  14 April 2009

Andrew H. Sinclair
Affiliation:
Department of Genetics and Human Variation La Trobe University, Bundoora, Victoria, 3083, Australia
Jacyln M. Wrigley
Affiliation:
Department of Genetics and Human Variation La Trobe University, Bundoora, Victoria, 3083, Australia
Jennifer A. Marshall Graves
Affiliation:
Department of Genetics and Human Variation La Trobe University, Bundoora, Victoria, 3083, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The OTC gene coding for ornithine transcarbamylase is sex linked and subject to X inactivation in humans and mice. We have used a rat cDNA probe to localize OTC by in situ hybridization in marsupials and monotremes. The gene maps to an autosomal site in two distantly related marsupial species and in one monotreme (the platypus); the first demonstration that a gene X-linked in one mammalian species may be autosomal in another. Since the conservation of the mammalian X is thought to be a consequence of its isolation by the inactivation mechanism, we propose that an autosomal or pseudoautosomal segment containing OTC has been recruited into the inactivated region of the X rather recently in eutherian evolution while it remained autosomal, or was translocated to an autosome, in metatherian and prototherian mammals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Air, G. M., Thompson, E. O. P., Richardson, B. J. & Sharman, G. B. (1971). Amino-acid sequences of kangaroo myoglobin and haemoglobin and the date of marsupial-eutherian divergence. Nature 229, 391394.CrossRefGoogle ScholarPubMed
Archer, M. (1984). The Australian Marsupial Radiation. In Vertebrate Zoogeography and Evolution in Australasia. (ed. Archer, M. and Clayton, G.), pp. 780781. Western Australia: Hesperian Press.Google Scholar
Cattanach, B. M. (1975). Control of chromosome inactivation. Annual Review of Genetics 9, 118.CrossRefGoogle ScholarPubMed
Cooper, D., McAllen, B. M., Donald, J. A., Dawson, G., Dobrovic, A. & Graves, J. A. M. (1984). Steroid sulphatase is not detected on the X chromosome of Australian marsupials. Cytogenetics Cell Genetics 37, 439.Google Scholar
Craig, I. W. & Tolley, E. (1986). Steroid sulphatase and the conservation of mammalian X chromosomes. Trends in Genetics 2, 201204.CrossRefGoogle Scholar
Crocker, N. & Craig, I. W. (1983). Variation in regulation of steroid sulphatase locus in mammals. Nature 303, 721722.CrossRefGoogle ScholarPubMed
Dawson, G. W. & Graves, J. A. M. (1986). Gene mapping in marsupials and monotremes. III. Assignment of four genes to the X chromosome of the wallaroo and the euro (Macropus robustus). Cytogenetics Cell Genetics 42, 8084.CrossRefGoogle Scholar
De Mars, R., Le Van, S. L., Trend, B. L. & Russell, L. B. (1976). Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation. Proceedings of the National Academy of Science. U.S.A. 73, 16931697.CrossRefGoogle ScholarPubMed
Dobrovic, A. & Graves, J. A. M. (1986). Gene mapping in marsupials and monotremes. II. Assignments to the X chromosome of dasyurid marsupials. Cytogenetics Cell Genetics 41, 913.CrossRefGoogle Scholar
Donlon, T. A., Litt, M., Newcom, S. R. & Magenis, R. E. (1983). Localization of the restriction fragment length polymorphism D1451 (pAW-101) to chromosome 14q32.l-32.2 by in situ hybridization. American Journal of Human Genetics 35, 10971106.Google Scholar
Gartler, S. M. & Rivest, M. (1983). Evidence for X-linkage of steroid sulphatase in the mouse: steroid sulphatase levels in oocytes of XX and XO mice. Genetics 103, 137141.CrossRefGoogle ScholarPubMed
Harper, M. E. & Saunders, G. F. (1981). Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosoma 83, 431439.CrossRefGoogle ScholarPubMed
Hayman, D. L., Ashworth, L. K. & Carrano, A. V. (1982). The relative DNA contents of the eutherian and marsupial X chromosomes. Cytogenetics Cell Genetics 34, 265270.CrossRefGoogle ScholarPubMed
Jones, M. E., Anderson, A. D., Anderson, C. & Hodes, S. (1961). Citrulline synthesis in rat tissues. Archives of Biochemistry and Biophysics 95, 499507.CrossRefGoogle ScholarPubMed
Keitges, E., Rivest, M., Siniscalco, M. & Gartler, S. M. (1985). X-linkage of steroid suiphatase in the mouse is evidence for a functional Y-linked allele. Nature 315, 226227.CrossRefGoogle ScholarPubMed
Kemp, T. S. (1982). In Mammal-like Reptiles and the Origin of Mammals. New York: Academic Press.Google Scholar
Lalley, P. A. & McKusick, V. A. (1985). Report of the committee on comparative mapping. Cytogenetics Cell Genetics 40, 536567.CrossRefGoogle Scholar
Lingren, V., de Martinville, B., Horwich, A. L., Rosenberg, L. E. & Francke, U. (1984). Human ornithine transcarbamylase locus mapped to band Xp21·1 near the duchenne muscular dystrophy locus. Science 226, 698700.CrossRefGoogle Scholar
Lykkesfeldt, G., Lykkesfeldt, A. E. & Skakkebaek, N. E. (1984). Steroid sulphatase in man: A non-inactivated X-locus with partial gene dosage compensation. Human Genetics 65, 355357.CrossRefGoogle Scholar
McIntyre, P., Mercer, J. F. B., Peterson, G. M., Hudson, P. & Hoogenraad, N. (1984). Selection of a cDNA clone which contains the complete coding sequency for the mature form of ornithine transcarbamylase from rat liver: expression of the cloned protein in Escherichia coli. European Journal of Biochemistry 143, 183187.CrossRefGoogle Scholar
Migeon, B. R., Shapiro, L. J., Norum, R. A., Mohandes, T., Axelman, J. & Dabora, R. L. (1982). Differential expression of steroid suiphatase locus on active and inactive human X chromosome. Nature 299, 838840.CrossRefGoogle ScholarPubMed
Mohandas, T., Shapiro, L. J., Sparkes, R. S. & Sparkes, M. C. (1979). Regional assignment of the steroid sulphatase-X-linked ichthyosis locus: Implications for a noninactivated region on the short arm of human X chromosome. Proceedings of the National Academy of Science U.S.A. 76, 57795783.CrossRefGoogle ScholarPubMed
Ohno, S. (1973). Ancient linkage groups and frozen accidents. Nature 244, 259262.CrossRefGoogle Scholar
Ricciuti, F. C., Gelehrter, T. D. & Rosenberg, L. E. (1976). X-chromosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase. American Journal of Human Genetics 28, 332338.Google ScholarPubMed
Sharp, P. (1982). Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86, 2747.CrossRefGoogle ScholarPubMed
Short, E. M., Conn, H. O., Snodgrass, P. J., Campbell, A. G. M. & Rosenberg, L. E. (1973). Evidence for X-linked dominant inheritance of ornithine transcarbamylase deficiency. New England Journal of Medicine 288, 712.CrossRefGoogle ScholarPubMed
Simmers, R. N., Stupans, I. & Sutherland, G. R. (1986). Localization of the human haptoglobin genes distal to the fragile site at 16q22 using in situ hybridization. Cytogenetics Cell Genetics 41, 3841.CrossRefGoogle Scholar
Trent, J. M., Olson, S. & Lawn, R. M. (1982). Chromosomal localization of human leukocyte, fibroblast, and immune interferon genes by means of in situ hybridization. Proceedings of the National Academy of Science U.S.A. 79, 78097813.CrossRefGoogle ScholarPubMed
Wainwright, B. J. (1984). Globin Gene Mapping in the Marsupial, Dasyurus viverrinus. Ph.D. Thesis, University of Adelaide, Australia.Google Scholar
Zabel, B. U., Naylor, S. L., Sakaguichi, A. Y., Bell, G. I. & Shows, T. B. (1983). High-resolution chromosomal localization of human genes for amylase, proopiomelanocortin, somatostatin, and a DNA fragment (D3S1) by in situ hybridization. Proceedings of the Natural Academy of Science U.S.A. 80, 69326936.CrossRefGoogle Scholar