Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:24:29.609Z Has data issue: false hasContentIssue false

Antisuppressor mutations in Aspergillus nidulans: cold-resistant revertants of suppressor suaC109

Published online by Cambridge University Press:  14 April 2009

S. D. Martinelli
Affiliation:
Department of Biology, Birkbeck College (University of London), Malet Street London WC1 7HX
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cold-resistant revertants of the cold-sensitive, ribosomal suppressor suaC109 have been isolated, with a view to obtaining mutations in new ribosomal protein genes. Many revertants had reduced suppressor activity and were classified as antisuppressor mutants. Both intragenic and extragenic reversions were found. In seven strains the extragenic reversion to cold resistance segregated with the antisuppressor phenotype, and these were designated asu mutations. Three of the five asu genes, C, B and D were mapped to linkage groups, I, II and V respectively. The antisuppressors are not gene-specific, although they mainly antagonize the activity of ribosomal suppressors. The antisuppressors altered all aspects of the phenotype of suppressor suaC109 including sensitivity to aminoglycoside antibiotics, and are therefore thought to be mutations in ribosomal protein genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Barben, H. (1966). Allelspezifische suppressor mutationen von Schizosaccharomyces pombe. Genetica (The Hague) 37, 109148.Google Scholar
Bollen, A., Cabezon, T., De Wilde, M., Villarroel, R. & Herzog, A. (1975). Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. Journal of Molecular Biology 99, 795806.CrossRefGoogle ScholarPubMed
Bratt, R. & Martinelli, S. D. (1986). Electrophoresis of the ribosomal proteins of translation mutants in Aspergillus nidulans. Heredity 57, 129.Google Scholar
Cabezon, T., Herzog, A., De Wilde, M., Villarroel, R. & Bollen, A. (1976). Cooperative control of translational fidelity by ribosomal proteins in Escherichia coli. III. A ram mutation in the structural gene for protein S5 (rpxE). Molecular and General Genetics 144, 5962.CrossRefGoogle Scholar
Clutterbuck, A. J. (1974). Aspergillus nidulans. In Handbook of Genetics, vol. 1 (ed. King, R. C.), pp. 447510. New York: Plenum Press.Google Scholar
Coppin-Raynal, E. (1977). Ribosomal suppressors and antisuppressors in Podospora anserina: resistance to cycloheximide. Journal of Bacteriology 131, 876883.CrossRefGoogle ScholarPubMed
Coppin-Raynal, E. (1981). Ribosomal suppressors and antisuppressors in Podospora anserina. Altered susceptibility to paromomycin and relationship between genetic and phenotypic suppression. Biochemical Genetics 19, 729740.CrossRefGoogle ScholarPubMed
Coppin-Raynal, E. (1982). Ribosomal control of translational fidelity in Podospora anserina. A suppressor and an antisuppressor affecting the paromomycin induced misreading in vitro. Current Genetics 5, 5161.CrossRefGoogle Scholar
Cove, D. J. (1966). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochimica et Biophysica Acta 113, 5156.CrossRefGoogle ScholarPubMed
Cundliffe, E. & Thompson, J. (1979). Ribose methylation and resistance to thiostrepton. Nature 278, 859861.CrossRefGoogle ScholarPubMed
De Wilde, M., Cabezon, T., Herzog, A. & Bollen, A. (1977). Apports de la génétique à la connaissance du ribosome bactérien. Biochimie 59, 125140.CrossRefGoogle Scholar
Dequard-Chablat, M. (1985 a). Ribosomal suppressors in Podospora anserina: evidence for two new loci by means of a new screening procedure. Genetical Research 45, 919.CrossRefGoogle ScholarPubMed
Dequard-Chablat, M. (1985 b). Identification of the structural gene for the S9 ribosomal protein in the fungus Podospora anserina: a new protein involved in the control of translational accuracy. Molecular and General Genetics 200, 343345.CrossRefGoogle ScholarPubMed
Dequard-Chablat, M., Coppin-Raynal, E., Picard-Bennoun, M. & Madjar, J. J. (1986). At least seven ribosomal proteins are involved in the control of translational accuracy in a eukaryote organism. Journal of Molecular Biology 190, 167175.CrossRefGoogle Scholar
Dujon, B. (1980). Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω and rib-l loci. Cell 20, 185197.CrossRefGoogle Scholar
Gonzalez, A., Jimenez, A., Vazquez, D., Davies, J. E. & Schindler, D. (1978). Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochimica Biophysica Acta 521, 459469.CrossRefGoogle ScholarPubMed
Gorini, L. & Beckwith, J. E. (1966). Suppression. Annual Reviews of Microbiology 20, 401422.CrossRefGoogle ScholarPubMed
Harvey, C. & Martinelli, S. D. (1983). An informational suppressor in Aspergillus nidulans has an altered ribosome profile. Heredity 50, 210.Google Scholar
Hastie, A. C. (1970). Benlate-induced instability of Aspergillus diploids. Nature 226, 771.CrossRefGoogle ScholarPubMed
Hawthorne, D. C. & Leupold, U. (1974). Suppressor mutations in yeast. Current Topics in Microbiology and Immunology 64, 147.CrossRefGoogle ScholarPubMed
Kohli, J., Altruda, F., Kwong, T., Rafalski, A., Wetzel, R., Soll, D., Wahl, G. & Leupold, U. (1980). Nonsense suppressor tRNAs in Schizosaccharomyces pombe. In Transfer RNA: Biological Aspects (ed. Soil, D., Abelson, J. and Schimmel, P. R.), pp. 407420. Cold Spring Harbor.Google Scholar
Kruszewska, A. & Slonimski, P. P. (1984). Mitochondrial and nuclear mitoribosomal suppressors that enable misreading of ochre codons in yeast mitochondria. II. Specificity and extent of suppressor action. Current Genetics 9, 1119.CrossRefGoogle ScholarPubMed
Kuhberger, R., Piepersberg, W., Petzet, A., Buckel, P. & Bock, A. (1979). Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli. Effects on fidelity of protein synthesis. Biochemistry 18, 187193.CrossRefGoogle ScholarPubMed
Lake, J. A. (1979). Ribosome structure and tRNA binding sites. In Transfer RNA: Structure, Properties and Recognition (ed. Schimmel, P. R., Soll, D. & Abelson, J. A.), pages 393411. Cold Spring Harbor.Google Scholar
Laten, H., Gorman, J. & Bock, R. M. (1980). i6A-deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae. In Transfer RNA: Biological Aspects (ed. Soil, D., Abelson, J. and Schimmel, P. R.) pp. 395–306. Cold Spring Harbor.Google Scholar
Liebman, S. W. & Cavenagh, M. (1980). An antisuppressor that acts on omnipotent suppressors in yeast. Genetics 95, 4961.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.CrossRefGoogle ScholarPubMed
McReady, S. J. & Cox, B. S. (1973). Antisuppressors in yeast. Molecular and General Genetics 124, 305320.CrossRefGoogle Scholar
Martinelli, S. D. (1984). Antisuppressors acting on suppressor suaC109 of Aspergillus nidulans. Heredity 52, 451452.Google Scholar
Martinelli, S. D. (1984). Interactions of ribosomal antibiotics and informational suppressors of Aspergillus nidulans. Journal of General Microbiology 130, 575582.Google ScholarPubMed
Martinelli, S. D., Roberts, T. J., Sealy-Lewis, H. M. & Scazzocchio, C. (1984). Evidence for a nonsense mutation at the niaD locus of Aspergillus nidulans. Genetical Research 43, 241248.CrossRefGoogle ScholarPubMed
Masurekar, M., Palmer, E., Ono, B., Wilhelm, J. M. & Sherman, F. (1981). Misreading of the ribosomal suppressor SUP46 due to an altered 40S subunit in yeast. Journal of Molecular Biology 147, 381390.CrossRefGoogle Scholar
Ozaki, M., Mizushima, S. & Nomura, M. (1969). Identification and functional characterisation of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222, 333339.CrossRefGoogle ScholarPubMed
Picard, M. (1973). Genetic evidence for a polycistronic unit of transcription in the complex locus 14 in Podospora anserina. II. Genetic analysis of informational suppressors. Genetical Research 21, 115.CrossRefGoogle Scholar
Picard-Bennoun, M. (1976). Genetic evidence for ribosomal antisuppressors in Podospora anserina. Molecular and General Genetics 147, 299306.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Roberts, T. J., Martinelli, S. D. & Scazzocchio, C. (1979). Allele-specific, gene-unspecific suppressors in Aspergillus nidulans. Molecular and General Genetics 177, 5764.CrossRefGoogle Scholar
Rosset, R. & Gorini, L. (1969). A ribosomal ambiguity mutation. Journal of Molecular Biology 39, 95112.CrossRefGoogle ScholarPubMed
Sherman, F. (1982). Suppression in the yeast Saccharomyces cerevisiae. In Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (ed. Strathern, J. N., Jones, E. W. and Broach, J. R.), pp. 463483. Cold Spring Harbor Monograph.Google Scholar
Strigini, P. & Gorini, L. (1970). Ribosomal mutations affecting efficiency of amber suppression. Journal of Molecular Biology 47, 517530.CrossRefGoogle ScholarPubMed
Thuriaux, P., Minet, M., Hofer, F. & Leupold, U. (1975). Genetic analysis of antisuppressor mutants in the fission yeast Schizosaccharomyces pombe. Molecular and General Genetics 142, 251261.CrossRefGoogle Scholar
Zamir, A. & Martinelli, S. D. (1984). Antisuppressors acting on suppressor suaC109 of Aspergillus nidulans. Heredity 52, 451452.Google Scholar
Zimmermann, R. A., Garvin, R. T. & Gorini, L. (1971). Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proceedings of the National Academy of Sciences, U.S.A. 68, 22632267.CrossRefGoogle ScholarPubMed