Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T13:49:30.333Z Has data issue: false hasContentIssue false

An SD (Segregation Distribution) – MR (Male Recombination) chromosome isolated from a natural population of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Gábor Bencze
Affiliation:
Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
Barton E. Slatko
Affiliation:
Department of Biology, Williams College, Williamstown, MA 01267, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A second chromosome line of Drosophila melanogaster (S-90), isolated from a northern California natural population, is able to induce (1) an increased frequency of X-chromosome visible mutations, (2) male recombination activity subject to reciprocal cross suppression, and (3) strong meiotic drive from heterozygous males. Based upon several lines of evidence (including the response to suppressor chromosomes of both systems) we conclude that S-90 contains both SD (Segregation Distortion) and MR (P or I) chromosome activity. The two systems appear to behave independently and simultaneously, and a small centromeric region of the S-90 chromosome appears to contain the major genetic elements of both systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

Berg, R., Engels, W. & Kreber, R. (1980). Site-specific X-chromosome rearrangements from hybrid dysgenesis in Drosophila melanogaster. Science 210, 427429.CrossRefGoogle ScholarPubMed
Bingham, P., Kidwell, M. & Rubin, G. (1982). The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P strain-specific transposon family. Cell 29, 9951004.CrossRefGoogle Scholar
Bregliano, J. C., Picard, G., Bucheton, A., Pelisson, A., Lavige, J. M. & L'héritier, P. (1980). Hybrid dysgenesis in Drosophila melanogaster. Science 207, 606611.CrossRefGoogle ScholarPubMed
Bregliano, J. C. & Kidwell, M. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J.) London: Academic Press. pp. 363410.Google Scholar
Cardellino, R. & Mukai, T. (1975). Mutator factors and genic variance components of viability in Drosophila melanogaster. Genetics 80, 567583.CrossRefGoogle Scholar
Engels, W. (1979 a). Extrachromosomal control of mutability in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 76, 40114015.CrossRefGoogle ScholarPubMed
Engels, W. (1979 b). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genetical Research 33, 219236.CrossRefGoogle Scholar
Engels, W. & Preston, C. (1981). Identifying P factors in Drosophila by means of chromosome breakage hotspots. Cell 26, 421428.CrossRefGoogle ScholarPubMed
Ganetzky, B. (1971). On the components of segregation distortion in Drosophila melanogaster. Genetics 86, 321335.CrossRefGoogle Scholar
Green, M. M. (1977 a). The case for DNA insertion mutations in Drosophila. In DNA Insertion Elements, Plasmids and Episomes (ed. Bukhari, A. I., Shapiro, J. and Adhya, S. L.) New York: Cold Spring Harbor Publications, pp. 437445.Google Scholar
Green, M. M. (1977 b). Genetic instability in Drosophila melanogaster: putative multiple insertion mutants at the singed bristle locus. Proceedings of the National Academy of Sciences, USA 74, 29732975.CrossRefGoogle Scholar
Green, M. M. (1977 c). Genetic instability in Drosophila melanogaster: de novo induction of putative insertion mutations. Proceedings of the National Academy of Sciences, USA 74, 349O3493.CrossRefGoogle ScholarPubMed
Green, M. M. & Shepherd, S. H. Y. (1979). Genetic instability in Drosophila melanogaster: the induction of specific chromosome 2 deletions by MR elements. Genetics 92, 823832.CrossRefGoogle ScholarPubMed
Hartl, D. & Hartung, N. (1975). High frequency of one element of Segregation Distorter in natural populations of Drosophila melanogaster. Evolution 29, 512518.CrossRefGoogle ScholarPubMed
Hartl, D. & Hiraizumi, Y. (1976). Segregation Distortion. In The Genetics and Biology of Drosophila, vol. 1 B (ed. Ashburner, M. and Novitski, E.), pp. 615666. London: Academic Press.Google Scholar
Hiraizumi, Y. (1961). Lethality and low viability induced by the Segregation Distorter locus (symbol SD) in Drosophila melanogaster. Annual Reports of the National Institute of Genetics, Japan 12, 12.Google Scholar
Hiraizum, Y. (1979). A model of the negative correlation between male recombination and transmission frequency in Drosophila melanogaster. Genetics 93, 449459.CrossRefGoogle Scholar
Hiraizumi, Y., Slatko, B., Langley, C. & Nill, A. (1973). Recombination in Drosophila melanogaster male. Genetics 73, 493544.CrossRefGoogle ScholarPubMed
Kataoka, Y. (1967). A genetic system modifying Segregation Distortion in a natural population of Drosophila melanogaster in Japan. Japanese Journal of Genetics 42, 327337.Google Scholar
Kidwell, M. G. (1982). Intraspecific hybrid sterility. In The Genetics and Biology of Drosophila, vol 3 c (ed. Ashburner, M., Carson, H. and Thompson, J. N. Jr). London: Academic Press. (In the Press).Google Scholar
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833.CrossRefGoogle ScholarPubMed
Kidwell, M. G., Novy, J. B. & Feeley, S. M. (1981). Rapid unidirectional change of hybrid potential in Drosophila. Journal of Heredity 72, 3238.CrossRefGoogle ScholarPubMed
Lindsley, D. & Grell, E. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute, Washington, Publication 627.Google Scholar
Martin, D. & Hiraizumi, Y. (1979). On the models of segregation distortion in Drosophila melanogaster. Genetics 93, 423435.CrossRefGoogle ScholarPubMed
Matthews, K. (1981). Developmental stages of genome elimination resulting in transmission ratio distortion of the T-007 male recombination MR chromosomes of Drosophila melanogaster. Genetics 97, 95111.CrossRefGoogle ScholarPubMed
Matthews, K. & Hiraizumi, Y. (1978). An analysis of male-recombination elements in a natural population of Drosophila melanogaster in South Texas. Genetics 88, 8191.CrossRefGoogle Scholar
Matthews, K. & Slatko, B. (1983). X-linked suppressors of dysgenic traits associated with a male recombination MR chromosome of Drosophila melanogaster. Genetics (in review).Google Scholar
Matthews, K., Slatko, B., Martin, D. & Hiraizumi, Y. (1978). A consideration of the negative correlation between transmission ratio and recombination frequency in a male recombination system of Drosophila melanogaster. Japanese Journal of Genetics 53, 1325.Google Scholar
Periquet, G. & Anxolabehere, D. (1982). Elements causing hybrid dysgenesis on the second chromosome of Drosophila melanogaster. Molecular and General Genetics 186, 309314.CrossRefGoogle Scholar
Rubin, G., Kidwell, M. & Bingham, P. (1982). The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29, 987994.CrossRefGoogle ScholarPubMed
Sandler, I. & Novitski, E. (1957). Meiotic drive as an evolutionary force. American Naturalist 91, 105110.CrossRefGoogle Scholar
Sandler, L., Hiraizumi, Y. & Sandler, I. (1959). Meiotic drive in natural populations of Drosophila melanogaster. I. The cytogenetic basis of segregation distortion. Genetics 44, 232250.CrossRefGoogle ScholarPubMed
Simmons, M. & Lim, J. (1980). Site-specificity of mutations arising in dysgenic hybrids of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 77, 60426046.CrossRefGoogle ScholarPubMed
Slatko, B. E. (1978). Evidence for newly induced genetic activity responsible for male recombination induction in Drosophila melanogaster. Genetics 90, 105124.CrossRefGoogle ScholarPubMed
Slatko, B. E. & Green, M. M. (1980). Genetic instability in Drosophila melanogaster: mapping the mutator activity of an MR strain. Biologisches Zentralblatt 99, 149155.Google Scholar
Slatko, B. E. & Hiraizumi, Y. (1973). Mutation induction in the male recombination strains of Drosophila melanogaster. Genetics 75, 643649.CrossRefGoogle ScholarPubMed
Slatko, B. E. & Hiraizumi, Y. (1975). Genetic elements causing male crossing over in Drosophila melanogaster. Genetics 81, 313324.CrossRefGoogle ScholarPubMed
Slatko, B. E. & Hiraizumi, Y. (1978). Genetic suppression of male recombination activity in Drosophila melanogaster. Genetics 88, s92.Google Scholar
Sved, J. A. (1979). The ‘hybrid dysgenesis’ syndrome in Drosophila melanogaster. BioScience 29, 659664.CrossRefGoogle Scholar
Woodruff, R. C. & Lyman, R. (1980). Segregation Distortion and Male Recombination in natural populations of Drosophila melanogaster. American Naturalist 116, 297304.CrossRefGoogle Scholar
Woodruff, R. C., Slatko, B. E. & Thompson, J. N. Jr, (1983). Factors affecting mutation rates in natural populations. In The Genetics and Biology of Drosophila, vol. 3 c (ed. Ashburner, M., Carson, H. and Thompson, J. N. Jr,.) London: Academic Press, pp. 37124.Google Scholar
Woodruff, R. C. & Thompson, J. N. Jr, (1980). Hybrid release of mutator activity and the genetic structure of natural populations. Evolutionary Biology 12, 129162.CrossRefGoogle Scholar
Yamaguchi, C. (1976). Spontaneous chromosome mutation and screening of mutator factors in Drosophila melanogaster. Mutation Research 34, 389406.CrossRefGoogle ScholarPubMed
Yannopoulos, G. (1978). Studies on male recombination in a southern Greek Drosophila melanogaster population: (c) chromosome abnormalities at male meiosis (d) cytoplasmic factor responsible for the reciprocal cross effect. Genetical Research 31, 187196.CrossRefGoogle Scholar