Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T11:35:16.827Z Has data issue: false hasContentIssue false

Allosuppressors in yeast

Published online by Cambridge University Press:  14 April 2009

B. S. Cox
Affiliation:
Botany School, South Parks Road, Oxford 0X1 3RA

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five loci have been identified in Saccharomyces cerevisiae whose function reduces suppressor activity in strains carrying ochre super-suppressor mutations. Recessive mutations which allow an increased level of suppression occur at these loci. In such mutants, termed allosuppressors, the serine-inserting suppressor SUPQ5 suppresses ochre mutations in a [psi] background and Class I tyrosine-inserting suppressors are lethal or have a reduced viability. Mutations at two allosuppressor loci, sal3 and sal4, have a lethal interaction with one another and with the extrachromosomal determinant [psi+]. This interaction is expressed in the absence of any suppressor mutation. All the mutant alleles of one allosuppressor locus sal3 are cold sensitive. One allosuppressor mutation, sal4.2, is temperature-sensitive for growth, as well as for other aspects of its phenotypic expression; namely the expression of SUPQ5 and the lethal interactions with Class I super-suppressors, with [psi+] and with sal3. At low temperature (24 °C), sal3-sal4.2 double mutants weakly suppress the ochre mutation ade2.1, but do not suppress his5.2 or lys1.1. It is argued that the site of function of the products of these loci is ribosomal and that they are involved in chain termination at UAA codons. It is inferred that the [psi+] factor or its product affects protein synthesis by interaction with the ribosome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Capecchi, M. Z., Hughes, S. H. & Wahl, G. M. (1975). Yeast super-suppressors are altered t-RNAs capable of translating a nonsense codon in vitro. Cell 6, 269277.CrossRefGoogle Scholar
Cox, B. S. (1965). ψ, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20, 505521.CrossRefGoogle Scholar
Cox, B. S. (1971). A recessive lethal super-suppressor mutation in yeast and other ψ phenomena. Heredity 26, 211232.CrossRefGoogle ScholarPubMed
Cox, B. S. & Bevan, E. A. (1962). Aneuploidy in yeast. New Phytologist 61, 342355.CrossRefGoogle Scholar
Crick, F. C. (1966). Codon-anticodon pairing: the wobble hypothesis. Journal of Molecular Biology 19, 548555.CrossRefGoogle ScholarPubMed
Gilmore, R. A. (1967). Super-suppressors in Saccharomyces cerevisiae. Genetics 56, 641658.CrossRefGoogle ScholarPubMed
Gilmore, R. A. & Mortimer, R. F. (1966). Super-suppressor mutations in Saccharomyces cerevisiae. Journal of Molecular Biology 20, 307311.CrossRefGoogle ScholarPubMed
Gilmore, R. A., Stewart, J. W. & Sherman, F. (1971). Amino-acid replacements resulting from super-suppression of nonsense mutants of iso-1-cytochrome c from yeast. Journal of Molecular Biology 61, 157173.CrossRefGoogle ScholarPubMed
Gorini, L. (1970). Informational suppression. Annual Review of Genetics 4, 107134.CrossRefGoogle ScholarPubMed
Hawthorne, D. C. (1967). Genetic modifiers of super-suppression in yeast. Genetics 56, 563.Google Scholar
Hawthorne, D. C. & Leupold, U. (1974). Suppressor mutations in yeast. Current Topics in Microbiology and Immunology 64, 147.CrossRefGoogle ScholarPubMed
Hawthorne, D. C. & Mortimer, R. K. (1968). Genetic mapping of nonsense suppressors in yeast. Genetics 60, 735742.CrossRefGoogle ScholarPubMed
Hurst, D. D. & Fogel, S. (1964). Mitotic recombination and heteroallelic repair in Saccharomyces cerevisiae. Genetics 50, 435458.CrossRefGoogle ScholarPubMed
Johnston, J. R. & Mortimer, R. K. (1959). Use of snail digestive juice in isolation of yeast spore tetrads. Journal of Bacteriology 78, 292.CrossRefGoogle ScholarPubMed
Liebman, S. W., Stewart, J. W. & Sherman, F. (1975). Serine substitution caused by an ochre suppressor in yeast. Journal of Molecular Biology 94, 595610.CrossRefGoogle ScholarPubMed
McCready, S. J. & Cox, B. S. (1973). Antisuppressors in yeast. Molecular and General Genetics 124, 305320.CrossRefGoogle ScholarPubMed
McCready, S. J., Cox, B. S. & McLaughlin, C. S. (1977). The extrachromosomal control of nonsense suppression in yeasts: an analysis of the elimination of [psi +] in the presence of a nuclear gene PNM . Molecular and General Genetics 150, 265270.CrossRefGoogle ScholarPubMed
Picard, M. (1973). Genetic evidence for a polycistronic unit of transcription in the complex locus ‘14’ in Podospora anserina. II. Genetic analysis of informational suppressors. Genetical Research 21, 115.CrossRefGoogle Scholar
Rothstein, R. J., Esposito, R. E. & Esposito, M. C. (1977). The effect of ochre suppression on meiosis and ascospore formation in Saccharomyces. Genetics 55, 3554.CrossRefGoogle Scholar
Schuller, R. C. & Von Borstel, R. C. (1974). Spontaneous mutability in yeast. I. Stability of lysine reversion rates to variation of adenine concentration. Mutation Research 24, 1723.CrossRefGoogle ScholarPubMed
Sealy-Lewis, H. & Casselton, L. A. (1977). Dominant and recessive informational suppressors of a nonsense mutation in Coprinus. Molecular and General Genetics 151, 189195.CrossRefGoogle Scholar
Young, C. S. H. & Cox, B. S. (1971). Extrachromosomal elements in a super-suppression system of yeast. I. A nuclear gene controlling the inheritance of the extrachromosomal elements. Heredity 26, 413422.CrossRefGoogle Scholar
Young, C. S. H. & Cox, B. S. (1975). Extrachromosomal elements in a super-suppression system of yeast. III. Enhanced detection of weak suppressors in certain non-suppressed strains. Heredity 34, 8392.CrossRefGoogle Scholar