Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T01:06:44.387Z Has data issue: false hasContentIssue false

Allelism tests of 15 dominant cataract mutations in mice

Published online by Cambridge University Press:  14 April 2009

J. Kratochvilova*
Affiliation:
GSF-Institut für Säugetiergenetik, D-8042 Neuherberg, Federal Republic of Germany
J. Favor
Affiliation:
GSF-Institut für Säugetiergenetik, D-8042 Neuherberg, Federal Republic of Germany
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fifteen autosomal dominant mutations that cause cataract of lenses in mice were tested for allelism. The outcrosses of double mutants revealed three allelism groups, consisting of 5, 4 and 2 mutations as well as 4 mutations which segregated independently. The results indicated 7 different cataract loci in the sample of 15 mutations. The biomicroscopic examination of the eyes showed that phenotypically similar as well as very distinct cataract mutations can be alleles of the same gene. Conversely, phenotypically similar mutations were shown to be non-allelic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Ehling, U. H. (1982). Risk estimation based on germ-cell mutations in mice. In Environmental Mutagens and Carcinogens (Proceedings of the 3rd International Conference on Environmental Mutagens), (ed. Sugimura, T., Kondo, S., and Takebe, H.), pp. 709719. University of Tokyo Press, Tokyo/Alan R. Liss, Inc., New York.Google Scholar
Ehling, U. H. (1983). Cataracts-indicators for dominant mutations in mice and man. In Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk (ed. de, F. J. Serres and Sheridan, W.), pp. 169190. New York: PlenumCrossRefGoogle Scholar
Ehling, U. H. (1988). Methods to estimate the genetic risk. Berzelius Symposium 15, 141149.Google Scholar
Ehling, U. H. & Favor, J. (1984). Recessive and dominant mutations in mice. In Mutation, Cancer and Malformation (ed. Chu, E. H.Y. and Generoso, W. M.), pp. 389428. New York: Plenum.CrossRefGoogle Scholar
Ehling, U. H.Favor, J.Kratochvilova, J. & Neuhäuser-Klaus, A. (1982). Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea. Mutation Research 92, 181192.CrossRefGoogle ScholarPubMed
Favor, J. (1983). A comparison of the dominant cataract and recessive specific-locus mutations rates induced by treatment of male mice with ethylnitrosourea. Mutation Research 110, 367382.CrossRefGoogle ScholarPubMed
Favor, J. (1984). Characterization of dominant cataract mutations recovered after 250 mg/kg ethylnitrosourea paternal treatment. Genetical Research 44, 183197.CrossRefGoogle ScholarPubMed
Favor, J. (1986). The frequency of dominant cataract and recessive specific-locus mutations in mice derived from 80 or 160 mg ethylnitrosourea per kg body weight treated spermatogonia. Mutation Research 162, 6180.CrossRefGoogle ScholarPubMed
Favor, J.Neuhäuser-Klaus, A.Kratochvilova, J. & Pretsch, W. (1989). Towards an understanding of the nature and fitness of induced mutations in germ cells of mice: homogenous viability and heterozygous fitness effects of induced specific-locus, dominant cataract and enzyme-activity mutations. Mutation Research 212,6775.CrossRefGoogle Scholar
Graw, J.Favor, J.Neuhäuser-Klaus, A. & Ehling, U. H. (1986). Dominant cataract and recessive specific locus mutations in offspring of X-irradiated male mice. Mutation Research 159, 4754.CrossRefGoogle ScholarPubMed
Green, E. L. (1981). Genetics and Probability in Animal Breeding Experiments. London and Basingstoke: Macmillan Press.CrossRefGoogle Scholar
Green, M. C. (1989). Catalog of mutant genes and polymorphic loci. In Genetic Variants and Strains of the Laboratory Mouse (ed. Lyon, M. F. and Searle, A. G.), pp. 12403. Oxford University Press, Oxford, New York, Tokyo. Fischer Verlag, Stuttgart.Google Scholar
Hogan, B. L. M.Horsburgh, G.Hetherington, CM.Fisher, G. & Lyon, M. F. (1986). Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. Journal of Embryology and experimental Morphology 97, 95110.Google Scholar
Hogan, B. L. M.Hetherington, C. M. & Lyon, M. F. (1987). Allelism of small eyes Sey with Dickie's small eye on chr. 2. Mouse News Letter 77, 135138.Google Scholar
Kratochvilova, J. (1981). Dominant cataract mutations detected in offspring of gamma-irradiated male mice. Journal of Heredity 72, 302307.CrossRefGoogle ScholarPubMed
Kratochvilova, J. & Favor, J. (1988). Phenotypic characterization and genetic analysis of twenty dominant cataract mutations detected in offspring of irradiated male mice. Genetical Research 52, 125134.CrossRefGoogle ScholarPubMed
Kratochvilova, J.Favor, J. & Neuhäuser-Klaus, A. (1988). Dominant cataract and recessive specific-locus mutations detected in offspring of procarbazine-treated mice. Mutation Research 198, 295301.CrossRefGoogle ScholarPubMed
Lyon, M. F.Jarvis, S. E.Sayers, I. & Holmes, R. S. (1981). Lens opacity: a new gene for congenital cataract on chromosome 10 of the mouse. Genetical Research 38, 337341.CrossRefGoogle ScholarPubMed
Muggleton-Harris, A. L.Festing, M. F. W. & Hall, M. (1987). A gene location for the inheritance of the Cataract Fraser (CatFr) mouse congenital cataract. Genetical Research 49, 235238.CrossRefGoogle ScholarPubMed
Paget, O. E. (1953). Cataracta hereditaria subcapsularis: Ein neues, dominates Allel bei der Hausmaus. Zeitschrift für induktive Abstammungs- und Vererbungslehre 85, 238244.Google Scholar
Phillips, A. J. S. & Cattanach, B. M. (1975). Handbook of Breeding Techniques. Genetic Group MRC Radiobiology Unit, Harwell, United Kingdom.Google Scholar
Roberts, R. C. (1967). Small-eyes, a dominant mutant in the mouse. Genetical Research 9, 121122.CrossRefGoogle Scholar
Verrusio, A. C. & Fraser, F. C. (1966). Identity of mutant genes ‘Shrivelled’ and cataracta congenita subcapsularis in the mouse. Genetical Research 8, 377378.CrossRefGoogle ScholarPubMed
Watson, M. L. (1962). A test for the identity of ‘Dysoptic’ with ‘Blind’ in mice. Proceedings of the Iowa Academy of Sciences 69, 591593.Google Scholar
Zwaan, J. & Williams, R. M. (1968). Morphogenesis of the eye lens in a mouse strain with hereditary cataracts. Journal of Experimental Zoology 169, 407422.CrossRefGoogle Scholar
Zwaan, J. & Williams, R. M. (1969). Cataracts and abnormal proliferation of the lens epithelium in mice carrying the CatFr gene. Experimental Eye Research 8, 161167.CrossRefGoogle ScholarPubMed