Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T06:50:58.103Z Has data issue: false hasContentIssue false

Adaptive value of PGM polymorphism in laboratory populations of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

M. Carfagna
Affiliation:
Institute of General Biology and Genetics, University of Naples, via Mezzocannone 8, 80134 Naples, Italy
L. Fucci
Affiliation:
Institute of General Biology and Genetics, University of Naples, via Mezzocannone 8, 80134 Naples, Italy
L. Gaudio
Affiliation:
Institute of General Biology and Genetics, University of Naples, via Mezzocannone 8, 80134 Naples, Italy
G. Pontecorvo
Affiliation:
Institute of General Biology and Genetics, University of Naples, via Mezzocannone 8, 80134 Naples, Italy
R. Rubino
Affiliation:
Institute of General Biology and Genetics, University of Naples, via Mezzocannone 8, 80134 Naples, Italy
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experiments have been performed to show that PGM polymorphism for the two common electrophoretic allozymes, PGMA and PGMB, in Drosophila melanogaster has adaptive value. Firstly, the allele frequencies converge to the same equilibrium value in six experimental populations. Secondly, density-dependent selection operates. Thirdly, the relative fitness of the three genotypes varies in modified culture media. PGM polymorphism is maintained by frequency-dependent selection and heterotic selection: the first mechanism operates to reach equilibrium frequency, the second cooperates to maintain it. The experiments performed with modified culture media favour the view that the two allozymes have different affinities for two components which are present in the nutritional environment. These components may be either substrates or other factors involved in the reaction catalyzed by PGM.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Ananthakrishnan, R., Beck, W. & Walter, H. (1973). Is the PGM1 locus subject to selection? Humangenetik 19, 247253.Google ScholarPubMed
Anxolabéhère, D. (1976). Heterosis overdominance and frequency-dependent selection in Drosophila melanogaster. Evolution 30, 523534.CrossRefGoogle ScholarPubMed
Beckman, G. & Beckman, L. (1975). Phosphoglucomutase phenotypes and prenatal selection. Studies of spontaneous and induced abortions. Human Heredity 25, 172176.CrossRefGoogle ScholarPubMed
Bijlsma, R. (1978). Polymorphism at the G6PD and 6PGD loci in D. m. II. Evidence for interaction in fitness. Genetical Research 31, 227237.CrossRefGoogle Scholar
Charlesworth, B. & Charlesworth, D. (1973). A study of linkage disequilibrium in populations of Drosophila melanogaster. Genetics 73, 351359.CrossRefGoogle ScholarPubMed
Costa, R., Danielli, G. A., D'Aloise, P. & De Franceschi, S. (1979). Analysis of isoelectrophoretic variability for a linkage disequilibrium study. Atti Associazione Genetica Italiana 30, 106108.Google Scholar
De Jong, G. & Scharloo, W. (1976). Environmental determination of selective significance or neutrality of amylase variants in Drosophila melanogaster. Genetics 84, 7794.CrossRefGoogle ScholarPubMed
Dobzhansky, Th. & Ayala, F. J. (1973). Temporal frequency changes of enzyme and chromosomal polymorphisms in natural population of Drosophila. Proceedings of the National Academy of Sciences U.S.A. 69, 30433048.Google Scholar
Fucci, L., Gaudio, L., Rao, R., Spanò, A. & Carfagna, M. (1979). The properties of phosphoglucomutase in Drosophila melanogaster. Biochemical Genetics 17, 825836.CrossRefGoogle ScholarPubMed
Gibson, J. (1970). Enzyme flexibility in Drosophila melanogaster. Nature 227, 959960.CrossRefGoogle ScholarPubMed
Gillespie, J. H. & Kojima, K. (1968). The degree of polymorphism in enzymes involved in energy production compared to that in non-specific enzymes in two Drosophila ananassae populations. Proceedings of the National Academy of Sciences U.S.A. 61, 582585.CrossRefGoogle Scholar
Gromko, M. H. (1977). What is frequency-dependent selection? Evolution 31, 438442.CrossRefGoogle ScholarPubMed
Gromko, M. H. & Richmond, R. C. (1978). Modes of selection maintaining an inversion polymorphism in Drosophila paulistorum. Genetics 88, 357366.CrossRefGoogle ScholarPubMed
Hickey, D. A. (1977). Selection for amylase allozymes in Drosophila melanogaster. Evolution 31, 800804.CrossRefGoogle ScholarPubMed
Hjorth, J. P. (1970). A phosphoglucomutase locus in Drosophila melanogaster. Hereditas 64, 146148.CrossRefGoogle ScholarPubMed
Huang, S. L., Singh, M. & Kojima, K. I. (1971). A study of frequency-dependent selection observed in the Esterase-6 locus of Drosophila melanogaster using a conditioned media method. Genetics 68, 97104.CrossRefGoogle ScholarPubMed
Koehn, R. K. (1969). Esterase heterogeneity: dynamics of a polymorphism. Science 163, 943944.CrossRefGoogle ScholarPubMed
Kojima, K., Gillespie, J. & Tobari, Y. N. (1970). A profile of Drosophila species enzyme assayed by electrophoresis. I. Number of alleles, heterozygosities and linkage disequilibrium in glucose-metabolizing systems and some other enzymes. Biochemical Genetics 4, 627637.CrossRefGoogle ScholarPubMed
Kojima, K. & Yarbrough, K. M. (1967). Frequency-dependent selection at the Esterase-6 locus in Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A. 57, 645649.CrossRefGoogle ScholarPubMed
Kojima, K. & Tobari, Y. N. (1969). Selective modes associated with kariotypes in Drosophila ananassae. II. Heterosis and frequency-dependent selection. Genetics 63, 639651.CrossRefGoogle Scholar
Langley, C. H., Ito, K. & Vorlker, R. A. (1977). Linkage disequilibrium in natural populations of Drosophila melanogaster. Seasonal variations. Genetics 86, 447454.CrossRefGoogle ScholarPubMed
Marinković, D. & Ayala, F. J. (1975). Fitness of allozyme variants in Drosophila pseudo-obscura. I. Selection at PGM-1 and Me-2 loci. Genetics 79, 8595.CrossRefGoogle Scholar
McDonald, J. F. & Ayala, F. J. (1974). Genetic response to environmental heterogeneity. Nature 250, 572574.CrossRefGoogle ScholarPubMed
Morgan, P. (1976). Frequency-dependent selection at two loci in Drosophila melanogaster. Nature 263, 765766.CrossRefGoogle ScholarPubMed
Oakeshott, J. G. (1975). Selection at the alcohol dehydrogenase locus in Drosophila melanogaster imposed by environmental ethanol. Genetical Research 26, 265274.CrossRefGoogle ScholarPubMed
Pipkin, J., Rhodes, C. & Williams, N. (1973). Influence of temperature on Drosophila alcohol dehydrogenase polymorphism. Journal of Heredity 64, 181185.CrossRefGoogle ScholarPubMed
Powell, J. R. (1971). Genetic polymorphisms in varied environments. Science 174, 10351036.CrossRefGoogle ScholarPubMed
Quick, C. B., Fisher, R. A. & Harris, H. (1974). A kinetic study of the isozymes determined by the three human phosphoglucomutase loci PGM1, PGM2 and PGM3. European Journal of Biochemistry 42, 511517.CrossRefGoogle ScholarPubMed
Spencer, N., Hopkinson, D. A. & Harris, H. (1964). Phosphoglucomutase polymorphism in man. Nature 204, 742745.CrossRefGoogle ScholarPubMed
Thompson, J. N. Jr. & Kaiser, T. N. (1977). Selection acting upon slow-migrating ADH alleles differing in enzyme activity. Heredity 38, 191195.CrossRefGoogle ScholarPubMed
Trippa, G., Loverre, A., Ulizzi, L., Scozzari, R. & Santolamazza, C. (1974). Studies on the PGM polymorphism in two successive years in natural populations of Drosophila melanogaeter. Atti Accademia Nazionale dei Lincei, serie VIII, LVI, 8991.Google Scholar
Trippa, G., Santolamazza, C. & Scozzari, R. (1970). Phosphoglucomutase (PGM) locus in Drosophila melanogaster: linkage and population data. Biochemical Genetics 4, 665667.CrossRefGoogle ScholarPubMed
Van Delden, W., Kamping, A. & Van Dijk, H. (1975). Selection at the alcohol dehydrogenase locus in Drosophila melanogaster. Experientia 31, 418419.CrossRefGoogle Scholar
Vigue, C. L. & Johnson, F. M. (1973). Isozyme variability in species of the genus Drosophila. VI. Frequency-property environment relationship of allelic alcohol dehydrogenase in Drosophila melanogaster. Biochemical Genetics 9, 213227.CrossRefGoogle Scholar