Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T23:09:34.706Z Has data issue: false hasContentIssue false

Volatile compounds of ditax fruit (Detarium senegalense J.F. Gmel) from Senegal

Published online by Cambridge University Press:  07 April 2014

Nafissatou Diop Ndiaye
Affiliation:
Inst. Technol. Alim., Route Pères Maristes, BP 2765, Dakar Hann, Sénégal
Marc Lebrun
Affiliation:
CIRAD, UMR95 QualiSud, TA B-95/16, 73 av. Jean François BretonF-34398Montpellier cedex 5France
Manuel Dornier*
Affiliation:
Montpellier SupAgro, UMR95 QualiSud, Inst. Rég. Chaudes, 1101 av. Agropolis, BP 5098, F-34093 Montpellier cedex 5, France,. [email protected]
*
* Correspondence and reprints
Get access

Abstract

Introduction. Detarium senegalense J.F. Gmel is a forest tree found in Senegal whose fruits are locally called ditax in Wolof. It is eaten fresh but it is widely used as nectar, which is one of the most popular beverages in Senegal. However, the chemical characterization of ditax pulp remains incomplete. This paper describes the volatile compounds of ditax to assess its organoleptic qualities. Materials and methods. Free volatile compounds of fresh ditax pulp were isolated by solvent-assisted flavor evaporation and analysis by GC-MS. Results and discussion. Among the 53 compounds tentatively identified, 49 are reported for the first time in this fruit. In total, 17 aldehydes, 11 aliphatic alcohols, 1 terpene alcohol, 7 free fatty acids, 3 unsaturated hydrocarbons, 1 terpene hydrocarbon, 7 sesquiterpene hydrocarbons, 1 phenol, 2 ketones, 2 esters and 1 organic acid compound were tentatively identified in ditax fresh pulp. The main volatiles identified in fresh ditax pulp were trans, cis-2,6-nonadienal (2.47 mg×kg–1), cis-2-heptenal (1.93 mg×kg–1), trans-a-bergamotene (1.11 mg×kg–1), bicyclo [2,2,0] hexane-1-carboxaldehyde (0.80 mg×kg–1), butyl octadecanoate (0.55 mg×kg–1) and trans-2-nonenal (0.47 mg×kg–1 fresh pulp). Conclusion. Among the volatile compounds identified, aldehyde compounds were widely predominant. To assess the aromatic qualities of ditax pulp, the primary impact aromas should be determined by identifying the aroma-active compounds by GC-olfactometry.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Diop, N., Ndiaye, A., Cisse, M., Dieme, O., Dornier, M., Sock, O., Le ditax (Detarium senegalense J. F. Gmel.): principales caractéristiques et utilisations au Sénégal, Fruits 65 (2010) 293306.CrossRefGoogle Scholar
Arbonnier M., Arbres, arbustes et lianes de zones sèches d’Afrique de l’Ouest, 2e éd., CIRAD–MNHN, Paris, France, 2002, 541 p.
Haddad C., Fruitiers sauvages du Sénégal, Univ. Montpellier I, Thèse, Montpellier, France, 2000, 372 p.
Kerharo J., Adam, J.G., La pharmacopée sénégalaise traditionnelle : plantes médicinales et toxiques, Ed. Vigot Frères, Paris, France, 1974, pp. 285–287.
Diop N., Dornier M., Dhuique‑Mayer C., Prades A., Munier‑Pantel S., Pélissier Y., Laroque M., Sock O., Caractérisation d’un fruit sauvage du Sénégal : le ditax (Detarium senegalense J.F. Gmel), in : Boëtsch G., Guerci A., Gueye L., Guisse A., Les plantes du Sahel, usages et enjeux sociaux, CNRS Ed., Paris, France, 2012, pp. 99–108.
Diop Ndiaye, N., Dhuique-Mayer, C., Cisse, M., Dornier, M., Identification and thermal degradation kinetics of chlorophyll pigments and ascorbic acid from ditax nectar (Detarium senegalense J.F. Gmel), J. Agric. Food Chem. 59 (22) (2011) 1201812027.CrossRefGoogle Scholar
Stein S., Mirokhin Y., Tchekhovskoi D., Mallard G., The NIST mass spectral search program for NIST/EPA/NIH mass spectral library, Distrib. Agilent Technologies for use with the GC/MS and LC/MS Chemstation, U.S.A., 2008.
Qiao, Y., Xie, B. J., Zhang, Ya., Zhang, Yu., Gang, F., Yao, X.L., Pan, S.Y., Characterization of aroma active compounds in fruit juice and peel oil of Jinchen sweet orange fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O, Molecules 13 (2008) 13331344. CrossRefGoogle ScholarPubMed
Ollé D., Caractérisation des polysaccharides et des composés aromatiques de différents cultivars de mangue (Mangifera indica L.). Devenir de ces constituants lors de la préparation des concentrés aromatiques pulpeux, Ecol. Ntl. Sup. Ind. Agric. Alim. (ENSIA), Thèse, Paris, France, 1997, 193 p.
Beaulieu, J.C., Lea, J.M., Characterization and semi quantitative analysis of volatiles in seedless watermelon varieties using solid-phase micro extraction, J. Agric. Food Chem. 54 (2006) 77897793.CrossRefGoogle Scholar
Hwan Oh, S., Seom Lim, B., Jin Hong, S., Koo Lee, S., Aroma volatile changes of netted muskmelon (Cucumis melo L.) fruit during developmental stages, Hortic. Environ. Biotechnol. 52 (6) (2011) 590595.Google Scholar
Yajima, I., Sarakibara, H., Ide, J., Yanai, T., Hayashi, K., Volatile flavor components of watermelon (Citrillus vulgaris), Agric. Biol. Chem. (Tokyo) 49 (1985) 31453150.Google Scholar
Kim, K.S., Lee, H.J., Keem, S.M., Volatile flavor components in watermelon (Citrullus vulgaris S.) and Oriental melon (Cucumis melo L.), Korean J. Food Sci. Technol. 31 (1999) 322328.Google Scholar
Rymal, K.S., Nakayama, T.O.M.N., Identification of some volatile compounds from cucumber, J. Agric. Food Chem. 22 (4) (1974) 717718.Google Scholar
Fross, D.A., Dunstone, E.A., Ramshaw, E.H., Stark, W., The flavor of cucumbers, J. Food Sci. 27 (1) (1962) 9093.CrossRefGoogle Scholar
Grosch, W., Schwarz, J., Linoleic and linolenic acid as precursors of the cucumber flavor, Lipids 6 (1971) 351352.CrossRefGoogle Scholar
Palma-Harris, C., McFeeters, R.F., Fleming, H.P., Fresh cucumber flavor in refrigerated pickles: Comparison of sensory and instrumental analysis, J. Agric. Food Chem. 50 (2002) 48754877.CrossRefGoogle Scholar
Solís-Solís, H.M., Calderón-Santoyo, M., Schorr-Galindo, S., Luna-Solano, G., Ragazzo-Sánchez, J.A., Characterization of aroma potential of apricot varieties using different extraction techniques, Food Chem. 105 (2007) 829837.CrossRefGoogle Scholar
Takeoka, G., Flath, R., Mon, T., Teranishi, R., Guentert, M., Volatile constituents of apricot (Prunus armeniaca L.), J. Agric. Food Chem. 38 (1990) 471477.CrossRefGoogle Scholar
Gómez, E., Ledbetter, C.A., Development of volatile compounds during fruit maturation: characterization of apricot and plum × apricot hybrids, J. Sci. Food Agric. 74 (1997) 541546. 3.0.CO;2-D>CrossRefGoogle Scholar
Guillot, S., Peytavi, L., Bureau, S., Boulanger, R., Lepoutre, J.P., Crouzet, J., Schorr-Galindo, S., Aroma characterization of various apricot varieties using headspace-solid phase micro extraction combined with gas chromatography-mass spectrometry and gas chromatography-olfactometry, Food Chem. 96 (2006) 147155.CrossRefGoogle Scholar
Quijano, C.E., Pino, J.A., Volatile compounds of copoazù (Theobroma grandiflorum Schumann) fruit, Food Chem. 104 (2007) 11231126. CrossRefGoogle Scholar
Boulanger, R., Crouzet, J., Identification of the aroma components of acerola (Malphigia glabra L.), Food Chem. 74 (2001) 209216.CrossRefGoogle Scholar
Beaulieu, J.C., Grimm, C.C., Identification of volatiles compounds in Cantaloupe at various developmental stages using solid phase micro extraction, J. Agric. Food Chem. 49 (2001) 13451352.CrossRefGoogle Scholar
Lõpez-Tamames, E., Carro-Mariño, N., Ziya-Gunata, Y., Sapis, C., Baumes, R., Bayonove, C., Potential aroma in several varieties of Spanish grape, J. Agric. Food Chem. 45 (1997) 17291735.CrossRefGoogle Scholar