Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T23:42:39.778Z Has data issue: false hasContentIssue false

Influence of different heat treatments on the contentof phenolic acids and their derivatives in selected fruits

Published online by Cambridge University Press:  04 April 2014

Get access

Abstract

Introduction. A considerable number of positive effects after the consumption of fruits has been pointed out in the past: hypolipidemic action, reduction of blood glucose levels, hepatoprotection and improvement of the antioxidant status as well as, inter alia, antioxidant, antiradical, anti-inflammatory, anticancer and anti-adipogenic status. Materials and methods. The changes in the levels of phenolic acids and their derivatives in fresh as well as in processed fruits (chokeberry, wild strawberry, apples var. Idared and Champion, cherry, apricot, peach, raspberry, cranberry, and bilberry) were studied using HPLC with UV detection. Dried fruit homogenates and compotes were produced. Also, fruits were fried to simulate jam production. Results and discussion. Eleven phenolic acids and their derivatives were identified in tested samples: caffeic, chlorogenic, p-coumaric, ferulic, gallic, ellagic, protocatechuic, p-hydroxybenzoic, gentisic, syringic and vanillic acids. In most cases, the thermal processing of fruits caused a decrease in the levels of phenolic acids. In some preserves, the level of selected individual phenolic compounds was unchanged or was significantly increased. Conclusion. It can be concluded that thermal processing can have a differential effect on the levels of phenolic acids in preserves and general conclusions could not be formulated. The fruit composition in which a phenolic acid is present can play a role in this context.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, L., Li, J., Hogan, S., Chung, H., Welbaum, G.E., Zhou, K., Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition, Food Chem. 119 (2010) 592599.CrossRefGoogle Scholar
Roussos, P.A., Sefferou, V., Denaxa, N.-K., Tsantili, E., Stathis, V., Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load, Sci. Hortic. 129 (2011) 472478.CrossRefGoogle Scholar
Caillet, S., Côté, J., Doyon, G., Sylvain, J.-F., Lacroix, M., Antioxidant and antiradical properties of cranberry juice and extracts, Food Res. Int. 44 (2011) 14081413.CrossRefGoogle Scholar
Valcheva-Kuzmanova, S., Borisova, P., Galunska, B., Krasnaliev, I., Belcheva, A., Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats, Exp. Toxicol. Pathol. 56 (2004) 195201.CrossRefGoogle ScholarPubMed
Yurt, B., Celik, I., Hepatoprotective effect and antioxidant role of sun, sulphited-dried apricot (Prunus armeniaca L.) and its kernel against ethanol-induced oxidative stress in rats, Food Chem. Toxicol. 49 (2011) 508513.CrossRefGoogle ScholarPubMed
Valcheva-Kuzmanova, S., Kuzmanov, K., Mihova, V., Krasnaliev, I., Borisova, P., Belcheva, A., Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats fed a high-cholesterol diet, Plant Food. Hum. Nutr. 62 (2007) 1924.CrossRefGoogle ScholarPubMed
Jurgoński, A., Juśkiewicz, J., Zduńczyk, Z., Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia, Plant Foods Hum. Nutr. 63 (2008) 176182.CrossRefGoogle Scholar
Bermùdez-Soto, M.J., Larrosa, M., Garcia-Cantalejo, J., Espin, J.C., Tomás-Barberan, F.A., Garcia-Conesa, M.T., Transcriptional changes in human Caco-2 colon cancer cells following exposure to a recurrent non-toxic dose of polyphenol-rich chokeberry juice, Genes Nutr. 2 (2007) 111113.CrossRefGoogle ScholarPubMed
Valcheva-Kuzmanova, S., Marazova, K., Krasnaliev, I., Galunska, B., Borisova, P., Belcheva, A., Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats, Exp. Toxicol. Pathol. 56 (2005) 385392.CrossRefGoogle ScholarPubMed
Yao, Y., Vieira, A., Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity, Neurotoxicology 28 (2007) 93100.CrossRefGoogle ScholarPubMed
Vu, K.D., Carlettini, H., Bouvet, J., Côté, J., Doyon, G., Sylvain, J.-F., Lacroix, M., Effect of different cranberry extracts and juices during cranberry juice processing on the antiproliferative activity against two colon cancer cell lines, Food Chem. 132 (2012) 959967.CrossRefGoogle Scholar
Caillet, S., Lorenzo, G., Côté, J., Doyon, G., Sylvain, J.-F., Lacroix, M., Cancer chemopreventive effect of fractions from cranberry products, Food Res. Int. 45 (2012) 320330.CrossRefGoogle Scholar
Šarić, A., Sobočanec, S., Balog, T., Kušić, B., Šverko, V., Dragović-Uzelac, V., Levaj, B., Čosič, Z., Mačak Šafranko, Ž., Marotti, T., Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus cerasus cv. Maraska), Plant Foods Hum. Nutr. 64 (2009) 231237.CrossRefGoogle Scholar
Castilho Maro, L.A., Pio, R., Santos Guedes, M.N., Patto de Abreu, C.M., Nogueira Curi, P., Bioactive compounds, antioxidant activity and mineral composition of fruits of raspberry cultivars grown in subtropical areas in Brazil, Fruits 68 (2013) 209217.CrossRefGoogle Scholar
Mejia-Meza, E.I., Yáňez, J.A., Remsberg, C.M., Takemoto, J.K., Davies, N.M., Rasco, B., Clary, C., Effect of dehydration on raspberries: polyphenol and anthocyanin retention, antioxidant capacity, and antiadipogenic activity, J. Food Sci. 75 (2010) H5H12.CrossRefGoogle Scholar
Bowen-Forbes, C.S., Zhang, Y., Nair, M.G., Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits, J. Food Compos. Anal. 23 (2010) 554560.CrossRefGoogle Scholar
Juranic, Z., Zizak, Z., Tasic, S., Petrovic, S., Nidzovic, S., Leposavic, A., Stanojkovic, T., Antiproliferative action of water extracts of seeds or pulp of five different raspberry cultivars, Food Chem. 93 (2005) 3945.CrossRefGoogle Scholar
Jakopic, J., Slatnar, A., Stampar, F., Veberic, R., Simoncic, A., Analysis of selected primary metabolites and phenolic profile of ‘Golden Delicious’ apples from four production systems, Fruits 67 (2012) 377386.CrossRefGoogle Scholar
Young, J., Wahle, K.W.J., Boyle, S.P., Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma cell lines: Surrogates for neurological damage in vivo, Prostag. Leukotr. Ess. 78 (2008) 145159.CrossRefGoogle ScholarPubMed
Itagaki, S., Kurokawa, T., Nakata, C., Saito, Y., Oikawa, S., Kobayashi, M., Hirano, T., Esiki, K., In vitro and in vivo antioxidant properties of ferulic acid, A comparative study with other natural oxidation inhibitors, Food Chem. 114 (2009) 466471.CrossRefGoogle Scholar
Fernández, M.A., Sáenz, M.T., García, M.D., Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens, J. Pharm. Pharmacol. 50 (1998) 11831186.CrossRefGoogle ScholarPubMed
Van der Logt, E.M., Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens, Carcinogenesis 24 (2003) 16511656.CrossRefGoogle ScholarPubMed
Yasuda, T., Inhibitory effects of urinary metabolites on platelet aggregation after orally administering Shimotsu-To, a traditional Chinese medicine, to rats, J. Pharm. Pharmacol. 55 (2003) 239244.CrossRefGoogle ScholarPubMed
Balasubashini, M.S., Rukkumani, R., Viswanathan, P., Menon, V.P., Ferulic acid alleviates lipid peroxidation in diabetic rats, Phytother. Res. 18 (2004) 310314.CrossRefGoogle Scholar
Jung, E.H., Kim, S.R., Hwang, I.K., Ha, T.Y., Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice, J. Agric. Food Chem. 55 (2007) 98009804.CrossRefGoogle ScholarPubMed
Suzuki, A., Yamamoto, M., Jokura, H., Fujii, A., Tokimitsu, I., Hase, T., Saito, I., Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats, Am. J. Hypertens. 20 (2007) 508513.CrossRefGoogle ScholarPubMed
Adisakwattana, S., Moonsan, P., Yibchok-Anun, S., Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo, J. Agric. Food Chem. 56 (2008) 78387844.CrossRefGoogle Scholar
Fetoni, A.R., Mancuso, C., Eramo, S.L.M., Ralli, M., Piacentini, R., Barone, E., Paludetti, G., Troiani, D., In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea-pig, Neuroscience 169 (2010) 15751588.CrossRefGoogle Scholar
Duchnowicz, P., Broncel, M., Podsędek, A., Koter-Michalak, M., Hypolipidemic and antioxidant effects of hydroxycinnamic acids, quercetin, and cyanidin 3-glucoside in hypercholesterolemic erythrocytes (in vitro study), Eur. J. Nutr. 51 (4) (2012) 435443.CrossRefGoogle Scholar
Bolling, B.W., Ji, L.L., Lee, C.-H., Parkin, K.L., Dietary supplementation of ferulic acid and ferulic acid ethyl ester induces quinine reductase and gluthatione-S-transferase in rats, Food Chem. 124 (2011) 16.CrossRefGoogle Scholar
Mori, H., Kawabata, K., Yoshimi, N., Tanaka, T., Murakami, T., Okada, T., Murai, H., Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis, Anticancer Res. 19 (5A) (1999) 37753778.Google Scholar
Liu, C.L., Wang, J.M., Chu, C.Y., In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity, Food Chem. Toxicol. 40 (2002) 635641.CrossRefGoogle ScholarPubMed
Srinivasan M., Sudheer A.R., Pillai K.R., Kumar P.R., Sudhakaran P.R., Menon V.P., Influence of ferulic acid on gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes, Toxicology 228 (2006) 249–258.
Wenk, G.L., McGann-Gramling, K., Hauss-Wegrzyniak, B., Ronchetti, D., Maucci, R., Rosi, S., Gasparini, L., Ongini, E., Attenuation of chronic neuroinflammation by a nitric oxide-releasing derivative of the antioxidant ferulic acid, J. Neurochem. 89 (2004) 484493.CrossRefGoogle ScholarPubMed
Cho, J.Y., Kim, H.S., Kim, D.H., Yan, J.J., Suh, H.W., Song, D.K., Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice, Prog. Neuro- Psychopha. 29 (2005) 901907.CrossRefGoogle ScholarPubMed
Karakida, F., Ikeya, Y., Tsunakawa, M., Yamaguchi, T., Ikarashi, Y., Takeda, S., Aburada, M., Cerebral protective and cognition-improving effects of sinapic acid in rodents, Biol. Pharm. Bull. 30 (2007) 514519.CrossRefGoogle ScholarPubMed
Cheng, C.Y., Su, S.Y., Tang, N.Y., Ho, T.Y., Chiang, S.Y., Hsieh, C.L., Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting of ICAM-1 mRNA expression in rats, Brain Res. 13 (2008) 136150.CrossRefGoogle Scholar
Yabe, T., Hirahara, H., Harada, N., Ito, N., Nagai, T., Sanagi, T., Yamada, H., Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo, Neuroscience 165 (2010) 515524.CrossRefGoogle ScholarPubMed
Khanal, R.C., Howard, L.R., Prior, R.L., Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins, Food Res. Int. 43 (2010) 14641469.CrossRefGoogle Scholar
Côté, J., Caillet, S., Doyon, G., Dussault, D., Salmieri, S., Lorenzo, G., Sylvain, J.-F., Lacroix, M., Effects of juice processing on cranberry antioxidant properties, Food Res. Int. 44 (2011) 29072914.CrossRefGoogle Scholar
Rababah, T.M., Al-Mahasneh, M.A., Kilani, I., Yang, W., Alhamad, M.N., Ereifej, K., Al-u’datt, M., Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruit, J. Sci. Food Agric. 91 (2011) 10961102.CrossRefGoogle Scholar
Arancibia-Avila, P., Namiestnik, J., Toledo, F., Werner, E., Martinez-Alaya, A.L., Rocha-Guzmán, N.E., Gallegos-Infante, J.A., Gorinstein, S., The influence of different time durations of thermal processing on berries quality, Food Control 26 (2012) 587593.CrossRefGoogle Scholar
Spanos, G.A., Wrolstad, R.E., Influence of variety, maturity, processing, and storage on the phenolic composition of pear juice, J. Agric. Food Chem. 38 (1990) 817824.CrossRefGoogle Scholar
Rommel, A., Wrolstad, R.E., Ellagic acid content of red raspberry juice as influenced by cultivar, processing, and environmental factors, J. Agric. Food Chem. 41 (1993) 19511960.CrossRefGoogle Scholar
Amakura, Y., Umino, Y., Tsuji, S., Tonogai, Y., Influence of jam processing on the radical scavenging activity and phenolic content in berries, J. Agric. Food Chem. 48 (2000) 62926297.CrossRefGoogle ScholarPubMed
Zafrilla, P., Ferreres, F., Tomás-Barberán, F.A., Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams, J. Agric. Food Chem. 49 (2001) 36513655.CrossRefGoogle ScholarPubMed
Levaj, B., Dragović-Uzelac, V., Delonga, K., Kovačevič Ganič, K., Banovi, M., Bursač Kovačevič, D., Polyphenols and volatiles in fruits of two sour cherry cultivars, some berry fruits and their jams, Food Technol. Biotechnol. 48 (2010) 538547.Google Scholar
Gil, M.I., Tomás-Barberán, F.A., Hess-Pierce, B., Holcroft, D.M., Kader, A.A., Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing, J. Agric. Food Chem. 48 (2000) 45814589.CrossRefGoogle Scholar
Häkkinen, S.H., Kärenlampi, S.O., Mykkänen, H.M., Heinonen, I.M., Törrönen, A.R., Ellagic acid content in berries: Influence of domestic processing and storage, Eur. Food Res. Technol. 212 (2000) 7580.Google Scholar
Dragovic-Uzelac, V., Pospišil, J., Levaj, B., Delonga, K., The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity, Food Chem. 91 (2005) 373383.CrossRefGoogle Scholar
Häkkinen, S., Heinonen, M., Kärenlampi, S., Mykkänen, H., Ruuskanen, J., Törrönen, R., Screening of selected flavonoids and phenolic acids in 19 berries, Food Res. Int. 32 (1999) 345353.CrossRefGoogle Scholar
Qian, J.-Y., Liu, D., Huang, A.-G., The efficiency of flavonoids in polar extracts of Lycium chinense Mill. fruits as free radical scavenger, Food Chem. 87 (2004) 283288.CrossRefGoogle Scholar