Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T05:33:05.276Z Has data issue: false hasContentIssue false

Development and characterization of gelatin nanoparticles loaded with a cocoa-derived polyphenolic extract

Published online by Cambridge University Press:  17 October 2014

Cinthya Nathaly Quiroz-Reyes
Affiliation:
Lab. Biomater., Cent. Investig. Cienc. Apl. Tecnol. Av. Inst. Politéc Nac., Legaria 694, Colonia Irrigación, C.P. 11500, México D.F.
Elba Ronquillo-de Jesús
Affiliation:
Lab. Biomater., Cent. Investig. Cienc. Apl. Tecnol. Av. Inst. Politéc Nac., Legaria 694, Colonia Irrigación, C.P. 11500, México D.F.
Nelson Eduardo Duran-Caballero
Affiliation:
Lab. Quím. Biol., Inst. Quím., Univ. Estadual Campinas, Cid. Univ. Zeferino Vaz, Barão Geraldo, 13083-970, Campinas, Sao Paulo, Brazil,. [email protected]
Miguel Ángel Aguilar-Méndez*
Affiliation:
Lab. Biomater., Cent. Investig. Cienc. Apl. Tecnol. Av. Inst. Politéc Nac., Legaria 694, Colonia Irrigación, C.P. 11500, México D.F.
*
* Correspondence and reprints
Get access

Abstract

Introduction. Polyphenols have received significant attention in recent years due to their antioxidant capacity and their significant role in disease prevention. Cocoa is one of the major naturally occurring sources of antioxidants, particularly of polyphenolic compounds. Materials and methods. Gelatin nanoparticles loaded with a cocoa-derived polyphenolic extract were synthesized by nanoprecipitation. The nanoparticle synthesis was performed using a central composite experimental design that allowed for the assessment of how gelatin concentration and surfactant concentration (Tween 80) affected the hydrodynamic diameter and polydispersity of the particles. The nanoparticles were characterized using dynamic light scattering (DLS), assessments of zeta potential, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Results. The analyses demonstrated that the nanoparticles examined exhibited hydrodynamic diameters of (100 to 400) nm, polydispersity indices of less than 0.2 and average zeta potential values of 29–33 mV. SEM images revealed that most nanoparticles were spherical and uniform in morphology, with average sizes less than 250 nm. In vitro experiments in which the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method was used to assess the prevalence of free radical-scavenging ability among these nanoparticles indicated that the loading efficiency for the nanoparticles was approximately 77.56%. Conclusion. Nanoparticles loaded with polyphenolic extract were obtained with average sizes ranging from (120 to 250) nm and largely spheroidal morphologies. Polymer and surfactant concentrations significantly influenced the hydrodynamic diameters and polydispersity indices of the particles. The incorporation of the polyphenolic extract into the polymer matrix enabled the preservation of the antiradical activity of the bioactive compound.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, J.,Koo, N.,Min, D.B., Reactive oxygen species, ageing, and antioxidative nutraceuticals, Compr. Rev. Food Sci. Food Saf. 3 (2004) 2133.CrossRefGoogle Scholar
Belšcak, A.,Komes, D.,Horzic, D., Kovacevic-Ganic, K., Karlovi, D., Comparative study of commercially available cocoa products in terms of their bioactive composition, Food Res. Int. 42 (2009) 707716.CrossRefGoogle Scholar
Jonfia-Essien, W.A.,West, G.,Alderson, P.G.,Tucker, G., Phenolic content and antioxidant capacity of hybrid variety cocoa beans, Food Chem. 108 (2008) 11551159.CrossRefGoogle ScholarPubMed
Hirano, R.,Osakabe, N.,Iwamoto, A.,Matsumoto, A.,Natsume, M., Antioxidant effects of polyphenols in chocolate on low-density lipoprotein both in vitro and ex vivo, J. Nutr. Sci. Vitaminol. 46 (2000) 199204.CrossRefGoogle ScholarPubMed
Hirano, R.,Sasamoto, W.,Matsumoto, A.,Itakura, H.,Igarashi, O.,Kondo, K., Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation, J. Nutr. Sci. Vitaminol. 47 (2001) 357362.CrossRefGoogle ScholarPubMed
Osakabe, N.,Baba, S.,Yasuda, A., Daily cocoa intake reduces the susceptibility of low-density lipoprotein to oxidation as demonstrated in healthy humans volunteers, Free Radic. Res. 34 (2001) 9399.CrossRefGoogle ScholarPubMed
Weisburger, J., Chemopreventive effects of cocoa polyphenols of chronic diseases, Exp. Biol. Med. 226 (2001) 891897.CrossRefGoogle ScholarPubMed
Osakabe, N., Cacao polyphenols and atherosclerosis, J. Clin. Biochem. Nutr. 37 (2005) 6772.CrossRefGoogle Scholar
Fang, Z.,Bhandari, B., Encapsulation of polyphenols – a review, Trends Food Sci. Technol. 21 (2010) 510523.CrossRefGoogle Scholar
Zwiorek K., Gelatin nanoparticles as delivery system for nucleotide-based drugs, Ludwig-Maximilians-Univ., Thesis, Munich, Germany, 2006, 215 p.
Lee, J.,Khan, S.,Park, K.,Lim, K., Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation, Bioprocess. Biosyst. Eng. 35 (2011) 297307.CrossRefGoogle ScholarPubMed
Junyaprasert, V.B.,Mitrevej, A.,Sinchaipanid, N.,Boonme, P.,Wurster, D.E., Effect of process variables on the microencapsulation of vitamin A palmitate by gelatin-acacia coacervation, Drug Dev. Ind. Pharm. 27 (2001) 561566.CrossRefGoogle ScholarPubMed
Hamidi, M.,Azadi, A.,Rafiei, P., Hydrogel nanoparticles in drug delivery, Adv. Drug Deliv. Rev. 60 (2008) 16381649.CrossRefGoogle ScholarPubMed
Mohanraj, V.J.,Chen, Y., Nanoparticles – a review, Trop. J. Pharm. Res. 5 (2006) 561573.Google Scholar
Mora, C.E.,Fessi, H.,Elaissari, A., Polymer-based nanocapsules for drug delivery, Int. J. Pharm. 385 (2010) 113142.CrossRefGoogle Scholar
Konan, Y.N.,Gurny, R.,Allémann, E., Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles, Int. J. Pharm. 233 (2002) 239252.CrossRefGoogle ScholarPubMed
Shutava, T.,Balkundi, S.,Vangala, P.,Steffan, J.,Bigelow, R.,Cardelli, J., O’Neal, P., Lvov, Y., Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols, Am. Chem. Soc. 3 (2009) 18771885.Google ScholarPubMed
Mozafari M.R., Mortazavi S.M., Nanoliposomes: From fundamentals to recent developments, in: Weissing V. (Ed.), Liposomes, vol. 1, Pharmaceutical nanocarriers, R. Humanis Press, N.Y., U.S.A., 2010.
Acosta, E., Bioavailability of nanoparticles in nutrient and nutraceutical delivery, Curr. Opin. Colloid Interface Sci. 14 (2009) 315.CrossRefGoogle Scholar
Linforth, R.S.T.,Pearson, K.S.K.,Taylor, A.J., In vivo flavor release from gelatin-sucrose gels containing droplets of flavor compounds, J. Agric. Food Chem. 55 (2007) 78597863.CrossRefGoogle ScholarPubMed
Chen, L.,Remondetto, G.E.,Subirade, M., Food protein-based materials as nutraceutical delivery systems, Trends Food Sci. Technol. 17 (2006) 272283.CrossRefGoogle Scholar
Quiroz-Reyes, C.N.,Aguilar-Méndez, M.A.,Ramírez-Ortiz, M.E., Ronquillo-de Jesús, E., Comparative study of ultrasound and maceration techniques for the extraction of polyphenols from cocoa beans (Theobroma cacao L.), Rev. Mex. Ing. Quím. 12 (2013) 1218.Google Scholar
SzeLim, Y., Sze Hui Lee, S., Chin Tan, B., Antioxidant capacity and antibacterial activity of different parts of mangosteen (Garcinia mangostana Linn.) extracts, Fruits 68 (6) (2013) 483489.Google Scholar
Naidu, K.,Paulson, A., A new method for the preparation of gelatin nanoparticles: Encapsulation and drug release characteristics, J. Appl. Polym. Sci. 121 (2010) 34953500.CrossRefGoogle Scholar
Bilati, U.,Allemann, E.,Doelker, E., Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci. 24 (2005) 6775.CrossRefGoogle ScholarPubMed
Quintanar, D.,Allémann, E.,Fessi, H.,Doelker, E., Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers, Drug Dev. Ind. Pharm. 24 (1998) 11131128.CrossRefGoogle Scholar
Rodriguez, J.M.,Rodriguez, M.R.,Sanchez, C.C., Physico-chemical properties of surfactant and protein films, Curr. Opin. Colloid Interface Sci. 12 (2007) 187195.CrossRefGoogle Scholar
Samal, K.S.,Dash, M., Van Vlierberghe, S.,Kaplan, L.,Chiellini, E., van Blitterswijk, C.,Moroni, L., Cationic polymers and their therapeutic potential, Chem. Soc. Rev. 41 (2012) 71477194.CrossRefGoogle ScholarPubMed
Calvo, P.,Vila-Jato, J.L.,Alonso, M.J., Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers, Int. J. Pharm. 153 (1997) 4150. CrossRefGoogle Scholar
Pinotti, A.,Garcia, M.,Martino, M.,Zaritzky, N., Study on microstructure and physical properties of composite films based on chitosan and gelatin, Food Hydrocoll. 21(2007) 6672.CrossRefGoogle Scholar
Chen, Y.C., Yu, S.H, Tsai, G.J., Tang, D.W., Mi, F.L., Peng, Y.P., Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization, J. Agric. Food Chem. 58 (2010) 67286734.CrossRefGoogle ScholarPubMed
Zhu, B.,Li, J.,He, Y.,Yoshie, N.,Inoue, Y., Hydrogen-bonding interaction and crystalline morphology in the binary blends of poly(ε-caprolactone) and polyphenol catechin, Macromol. Biosci. 3 (2003) 684693.CrossRefGoogle Scholar
Ren, W.,Tian, G.,Jian, S.,Gu, Z.,Zhou, L.,Yan, L.,Jin, S.,Yin, W.,Zhao, Y., Tween coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery, RSC. Adv. 2 (2012) 70377041.CrossRefGoogle Scholar
Souza, J.,Feitosa, J.,Ricardo, N.,Trevisan, M., de Paula, H.,Ulrich, C.,Owen, R., Spray-drying encapsulation of mangiferin using natural polymers, Food Hydrocoll. 33 (2013) 1018.CrossRefGoogle Scholar
Leo, E.,Cameroni, R.,Forni, F., Dynamic dialysis for the drug release evaluation from doxorubicin-gelatin nanoparticles conjugates, Int. J. Pharmacol. 180 (1999) 2330.CrossRefGoogle Scholar
Bennick, A., Interaction of plant polyphenols with salivary proteins, Crit. Rev. Oral Biol. Med. 13 (2002) 184196.CrossRefGoogle ScholarPubMed
Yi, K.,Cheng, G., Xing F. Gelatin/tannin complex nanospheres via molecular assembly, J. Appl. Polym. Sci. 101 (2006) 31253130.CrossRefGoogle Scholar