Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T08:15:23.056Z Has data issue: false hasContentIssue false

Tamarind (Tamarindus indica L.) parkland mycorrhizal potential within three agro-ecological zones of Senegal

Published online by Cambridge University Press:  06 December 2010

Sali Bourou
Affiliation:
Inst. Sénégal. Rech. Agric. (ISRA), Cent. Etude Rég. Amélior. Adapt. Sécheresse (CERAAS), BP 3320, Thiès, Sénégal, Inst. Agric. Res. Dev., BP 415, Garoua, Cameroon
Fatimata Ndiaye
Affiliation:
Inst. Sénégal. Rech. Agric. (ISRA), Lab. Natl. Rech. Prod. Vég. (LNRPV), BP 3120, Dakar Bel Air, Sénégal
Macoumba Diouf
Affiliation:
Inst. Sénégal. Rech. Agric. (ISRA), Cent. Etude Rég. Amélior. Adapt. Sécheresse (CERAAS), BP 3320, Thiès, Sénégal,
Tahir Diop
Affiliation:
Cheikh Anta Diop Univ., Lab. Biotechnol. Champignons, BP 5005, Dakar, Sénégal
Patrick Van Damme
Affiliation:
Univ. Ghent, Fac. Biosci. Eng., Coup. Links 653, B-9000 Ghent, Belgium
Get access

Abstract

Introduction. Tamarind (Tamarindus indica L.) belongs to the Fabaceae family; it is a multipurpose tree with slow growth. In order to help improve its growth and development, we assessed mycorrhizal diversity of tamarind parklands in Senegal. Materials and methods. Three sites of tamarind populations were sampled for each agro-ecological zone in Senegal: the Sahelian zone (i), Sahelo-Sudan zone (ii) and Sudan zone (iii). Soil and root samples were collected in each site and used for arbuscular mycorrhizal (AM) spore isolation and root colonization assessment. We identified the mycorrhizal fungi from spore collections and evaluated the root mycorrhization rate, defined as percentage of roots colonized according to agro-ecological zones. Results and discussion. The results did not reveal a specific AM fungal strain associated with tamarind plants. Three arbuscular mycorrhizal fungi (AMF) were identified from spores on the genus level: Glomus, Scutellospora and Acaulospora. Tamarind sites with sandy soil texture (70–90%) and located in dry areas (Sahel and Sudano-Sahel zones) were shown to be rich in mycorrhizal propagules. High densities of soil AM propagules evaluated with the Most Probable Number method (MPN) were found in Niokhoul (1100 propagules per 50 g of soil), Sakal (790 propagules per 50 g of soil) and Mbassis (780 propagules per 50 g of soil). However, higher mycorrhizal colonization (11%) was observed in the Sahel agro-ecological zone compared with the Sudano-Sahelian and Sahelian zones (3%) of Senegal. Conclusion. Our study explored natural AMF diversity as a starting point to develop inocula to be used in commercial nursery production of tamarinds.

Type
Original article
Copyright
© 2010 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ribot, J. C., A history of fear: imagining deforestation in the West African dryland forests, Glob. Ecol. Biogeogr. 8 (1999) 116. CrossRefGoogle Scholar
Bowe C., Predicting suitable areas for the production of tamarind (Tamarindus indica L.) an underutilized fruit tree species, Univ. Southampt., Southampt., U.K., Thesis, 2006, 218 p.
Morton J., Tamarind (Tamarindus indica), in: Fruits of warm climates, Julia F. Morton, Miami, FL, U.S.A., 1987, pp. 115–121.
El-Siddig K., Gunasena H.P.M., Prasad B.A., Pushpakumara D.K.N.G., Ramana K.V.R., Vijayand P., Williams J.T., Tamarind (Tamarindus indica L.), Br. Libr., Southampt., U.K., 2006.
, A.M., Plenchette, C., Danthu, P., Duponnois, R., Guissou, T., Functional compatibility of two arbuscular mycorrhizae with thirteen fruit trees in Senegal, Agrofor. Syst. 50 (2000) 95105. CrossRefGoogle Scholar
Diallo, B.O., Mckey, D., Chevallier, M-H., Joly, H.I., Hossaert-Mckey, M., Breeding system and pollination biology of the semi-domesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae): Implications for fruit production, selective breeding, and conservation of genetic resources, Afr. J. Biotechnol. 7 (2008) 40684075. Google Scholar
Wubet, T., Kottke, I., Teketay, D., Oberwinkler, F., Arbuscular mycorrhizal fungal community structures differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation, Mycol. Prog. 8 (2009) 317328. CrossRefGoogle Scholar
Calvente, R., Cano, C., Ferrol, N., Azcón-Aguilar, C., Barea, J., Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets, Appl. Soil Ecol. 26 (2004) 1119. CrossRefGoogle Scholar
Giovanetti, M., Mosses, B., An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots, New Phytol. 84 (1980) 489500. CrossRefGoogle Scholar
Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I. R., Frossard, E., Diversity and structure of AMF communities as affected by tillage in a temperate soil, Mycorrhiza 12 (2002) 225234. Google Scholar
Brundrett, M., Diversity and classification of mycorrhizal associations, Biol. Rev. 79 (2004) 473495. CrossRefGoogle ScholarPubMed
Wang, Y.Y., Vestberg, M., Walker, C., Hurmer, T., Zhang, X., Lindström, K., Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China, Mycorrhiza 18 (2008) 5968. CrossRefGoogle ScholarPubMed
Gerdemann, J.W., Nicholson, T.H., Spores for mycorrhizal endogone species extracted from soil by wet sieving and decanting, Trans. Br. Mycol. Soc. 46 (1963) 235244. CrossRefGoogle Scholar
Morton, J.B., Benny, G.L., Revised classification of arbuscular mycorrhizal fungi (Zygomicetes): a new order, Glomales, two new suborders, Glominae and Gigasporinae, and two new families, Acaulosporaceae, with an emendation of Glomaceae, Mycotaxon 37 (1990) 471491. Google Scholar
Tsané, G., Fogain, R., Achard, R., Foko, J., Impact de la mycorhization arbusculaire sur la croissance de vitroplants de plantain, testée sur des sols de fertilité différente en conditions contrôlées au Cameroun, Fruits 60 (2005) 303309. CrossRefGoogle Scholar
Déziel M.-H., Influence de l’inoculation endomycorhizienne au champ sur le rendement et la qualité de la pomme de terre (Solanum tuberosum L.), Univ. Laval, mémoire, Laval, Can., 2000, 112 p.
McMillen, B.G., Juniper, S., Abbot, L.K., Inhibition of hyphal growth of a VA mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores, Soil Biol. Biochem. 30 (1998) 16391646. CrossRefGoogle Scholar
Aliasgharzadeh, N., Saleh, R.N., Towfighi, H., Alizadeh, A., Occurence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil, Mycorrhiza 11 (2001) 119122. CrossRefGoogle Scholar
Gerdemann, J.W., Trappe, J.M., Endogonaceae in the Pacific Northwest, Mycologia 5 (1974) 176. Google Scholar
Walker, C., Sanders, F.E., Taxonomic concepts in the Endogonaceae: The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe, Mycotaxon 27 (1986) 169182. Google Scholar
Alagely A., Ogram A., Soil microbial ecology: laboratory exercises, Iqbal Ahmad, John Pichtel and Shamsul Hayat, New Delhi, India, 2006, 68 p.
Maksoud, M.A., Haggag, L.F., Azzay, M.A., Saad, R.N., Effect of VAM inoculation and phosphorous application on growth and nutrient content (P and K) of Tamarindus indica L. (Tamarind) seedlings, Ann. Agric. Sci. 30 (1994) 355363. Google Scholar
Mutabaruka, R., Mutabaruka, C., Fernandez, I., Diversity of arbuscular mycorrhizal fungi associated to tree species in semiarid areas of Machakos, Arid Land Res. Manag. 16 (2002) 385390. CrossRefGoogle Scholar
Diop, T.A., Gueye, M., Dreyfus, B.L., Plenchette, C., Strullu, D.G., Indigenous arbuscular mycorrhizal fungi associated with Acacia albida Del. in different areas of Senegal, Appl. Environ. Microbiol. 60 (1994) 34333436. Google ScholarPubMed
Bouamri, R., Dalpé, Y., Serrhini, M.N., Bennani, A., Arbuscular mycorrhizal fungi species asso-ciated with rhizosphere of Phoenix dactylifera L. in Morocco, Afr. J. Biotechnol. 5 (2006) 510516. Google Scholar
Sieverding E., Vesicular-arbuscular mycorrhiza management in tropical agrosystems, Tech. Coop. GTZ, Eschborn, Ger., 1991, 23 p.
Shepherd K.D., Ohlsson E., Okalebo J. R., Ndufa J. K., David S., A static model of nutrient on mixed farms in the highlands of Western Kenya to explore the possible impact of improved management, in: Powell J.M, Ferrandez-Rivera S., Williams T. O., Renard C. (Eds.), Livestock and sustainable nutrient cycling in mixed farming systems of Sub-Sahara Africa, Int. Livest. Cent. Afr., Addis Ababa, Ethiop., 1995.
Ülle, P., Rosling, A., Taylor, A.F.S., Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantation, For. Ecol. Manag. 196 (2004) 413424. Google Scholar
Uhlmann, E., Görke, C., Petersen, A., Oberwinkler, F., Arbuscular mycorrhizae from arid parts of Namibia, J. Arid Environ. 64 (2006) 221237. CrossRefGoogle Scholar