Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T14:35:24.684Z Has data issue: false hasContentIssue false

Solid-phase microextraction and gas chromatography-mass spectrometry for quantitative determination of chlordecone in water, plant and soil samples

Published online by Cambridge University Press:  11 July 2014

Alain Soler*
Affiliation:
Cent. Coop. Int. Rech. Agron. Dév. (CIRAD), Persyst, UR Banan. Plantain and Pineapple Crop. Syst., CAEC, BP 214, 97285 Le Lamentin cedex 2, Martin., Fr.,. [email protected]
Marc Lebrun
Affiliation:
Cirad, Persyst, UMR Qualisud, 34398 Montp., Fr.,; [email protected]
Yoan Labrousse
Affiliation:
IRD, Ins. Méditerr. Biodivers. Ecol. Mar. Cont. (IMBE), Aix-Marseille Univ., UMR CNRS IRD Avignon Univ., CAEC, BP 214, 97285 Le Lamentin cedex 2, Martin., Fr.,; [email protected]
Thierry Woignier
Affiliation:
IMBE, Aix-Marseille Univ., UMR CNRS 7263 IRD 237 Avignon Univ., F-13397 Marseille, Fr., ; t [email protected]
*
* Correspondence and reprints
Get access

Abstract

Introduction. Chlordecone (CLD), an organochlorine formerly used to control the banana black weevil, is strongly adsorbed on soils, particularly on andosols. A simplified analytical procedure for the quantitative determination of chlordecone residues in water and micro-samples of soil and plants was compared with a standard method. Materials and methods. The procedure combines a simplified sampling protocol and a 10-min solid phase microextraction (SPME), followed by gas chromatographic separation (GC) and mass spectrometric (MS and MS/MS) identification. Quantitation of CLD used a standard addition method with zero extrapolation. First, seventy samples were analysed using the proposed method and the standard method based on hot solvent extraction. Second, fifteen soil samples were analysed with two SPME methods followed by GC-MS but using CLD labelled with C13 as an internal standard or the proposed method. Results and discussion. The detection (LOD) and quantitation (LOQ) limits of our SPME extraction procedure were determined for GC-MS and GC-MS/MS with water, plant (pineapple roots) and soil samples: in water for MS/MS, LODMS/MS-water = 0.5 ng×L–1, LOQMS/MS-water = 2.0 ng×L–1; in andosol for MS/MS, LODMS/MS-soil = 15.0 ng×kg–1 dw, LOQMS/MS-soil = 80.0 ng×kg–1 dw. Data from the seventy contaminated soils obtained with the proposed method and the standard method showed a correlation coefficient of r = 0.86. Data obtained by the two SPME/GC-MS quantitation procedures showed a correlation of r = 0.8073. Conclusion. The method proposes a simplified sample preparation and extraction of CLD in water, plant and soil samples, with no solvent manipulation and which is not time-consuming. The LOD and LOQ were similar to those obtained with other currently used methods. The method is reliable and accurate and may be considered as a good tool for research purposes.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabidoche, Y.M., Achard, R., Cattan, P., Clermont-Dauphin, C., Massat, F., Sansoulet, J., Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue, Environ. Pollut. 157 (2009) 16971705.CrossRefGoogle ScholarPubMed
Ramdine G., Lemoine S., Anthropogenic contaminations in the mangrove of Guadeloupe (Lesser Antilles): use of a biomarker of genotoxicity for monitoring, in: Proc. 61st Gulf Carrib. Fish. Inst., Nov. 10–14, Gosier, Guadeloupe, F.W.I., 2008.
Multigner, L., Ndong, , Giusti, A., Romana, M., Delacroix-Maillard, H., Cordier, S., Jégou, B., Thome, J.P., Blanchet, P., Chlordecone exposure and risk of prostate cancer, J. Clin. Oncol. 28 (2010) 34573462.CrossRefGoogle ScholarPubMed
Multigner L., Kadhel P., Huk-Terki F., Thomé J.P., Janky E., Auger J., Exposure to chlordecone and male fertility in Guadeloupe (French West Indies), Epidemiology 17 (2006).
Multigner, L., Cordier, S., Kadhel, P., Huc-Terki, F., Blanchet, P., Bataille, H., Pollution par le chlordécone aux Antilles, quel impact sur la santé de la population ?, Environ. Risques Santé 6 (2007) 13.Google Scholar
Epstein, S.S., Kepone – Hazard evaluation, Sci. Total Environ. 9 (1978) 162.CrossRefGoogle Scholar
Okolle, J.N., Fansi, G.H., Lombi, F.M., Lang, P.S., Loubana, P.M., Banana entomological research in Cameroon: how far and what next?, Afr. J. Plant Sci. Biotechnol. 3 (2009) 119.Google Scholar
Kilzer, L., Scheunert, I., Geyer, H., Klein, W., Korte, F., Laboratory screening of the volatization rates of organic chemicals from water and soil, Chemosphere 10 (1979) 751761.CrossRefGoogle Scholar
Wada K., The distinctive properties of andosol, in: Stewart B.A. (Ed.), Advances in soil sciences, Springer Verlag, N.Y., U.S.A., 1985.
Chevallier, T., Woignier, T., Toucet, J., Blanchart, E., Dieudonné, P., Fractal structure in natural gels: effect on carbon sequestration in volcanic soils, J. Sol-Gel Sci. Technol. 48 (2008) 231238.CrossRefGoogle Scholar
Woignier, T., Morell, M., Morell, O., Duffours, L., Soler, A., Low water transport in fractal microstructure of tropical soils: application to chlordecone pesticide trapping, Ecohydrol. Hydrobiol. 11 (2011) 121128.CrossRefGoogle Scholar
Woignier, T., Fernandes, P., Jannoyer-Lesueur, M., Soler, A., Sequestration of chlordecone in the porous structure of an andosol and effects of added organic matter: an alternative to decontamination, Eur. J. Soil Sci. 63 (2012) 717723.CrossRefGoogle Scholar
Woignier, T., Fernandes, P., Soler, A., Clostre, F., Carles, C., Rangon, L., Lesueur-Jannoyer, M., Soil microstructure and organic matter: keys for chlordecone sequestration, J. Hazard Mater. 262 (2013) 357364.CrossRefGoogle Scholar
Cabidoche, Y.M., Lesueur-Jannoyer, M., Contamination of harvested organs in root crops grown on chlordecone-polluted soils, Pedosphere 22 (2012) 562571.CrossRefGoogle Scholar
Saleh, F.Y., Lee, G.F., Analytical methodology for Kepone in water and sediment, Environ. Sci. Technol. 12 (1978) 297301.CrossRefGoogle Scholar
Bordet, F., Thieffinne, A., Mallet, J., Heraud, F., Blateau, A., Inthavong, D., In-house validation for analytical methods and quality control for risk evaluation of chlordecone in food, Int. J. Environ. Anal. Chem. 87 (2007) 985998.CrossRefGoogle Scholar
Cairns, T., Siegmund, E.G., Doose, G.M., Liquid chromatography/mass spectrometry of Kepone hydrate, Kelevan, and Mirex, Anal. Chem. 54 (1982) 953957.CrossRefGoogle Scholar
Moseman, R.F., Crist, H.L., Edgerton, T.R., Ward, M.K., Electron capture gas chromatographic determination of Kepone residues in environmental samples, Arch. Environ. Contamin. Toxicol. 6 (1977) 221231.CrossRefGoogle ScholarPubMed
Bristeau, S., Amalric, L., Mouvet, C., Validation of chlordecone analysis for native and remediated French West Indies soils with high organic matter content, Anal. Bioanal. Chem. 406 (2014) 10731080.CrossRefGoogle ScholarPubMed
Martin-Laurent F., Sahnoun M.M., Merlin C., Vollmer G., Lubke M., Detection and quantification of chlordecone in contaminated soils from the French West Indies by GC-MS using the (13)C 10-chlordecone stable isotope as a tracer, Environ. Sci. Pollut. Res. Int. (2013) 1–6.
Amalric, L., Henry, B., Berrehouc, A., Determination of chlordecone in soils by GC/MS, Int. J. Environ. Anal. Chem. 86 (2006) 1524.CrossRefGoogle Scholar
Anon., Effet des matériaux sur la qualité des eaux destinées à la consommation humaine - Matériaux organiques, Part. 2 : méthode de mesure des micropolluants minéraux et organiques, Norme AFNOR XP P41-250-2, AFNOR, Paris, France, 2001.
Harris, R.L., Huggett, R.J., Slone, H.D., Determination of dissolved Kepone by direct addition of XAD-2 resin to water, Anal. Chem. 52 (1980) 779780.CrossRefGoogle Scholar
Brunet, D., Woignier, T., Lesueur-Jannoyer, M., Achard, R., Rangon, L., Barthès, B.G., Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS), Environ. Pollut. 157 (2009) 31203125.CrossRefGoogle Scholar
Hawthorne, S.B., Grabanski, C.B., Miller, D.J., Solid-phase-microextraction measurement of 62 polychlorinated biphenyl congeners in milliliter sediment pore water samples and determination of KDOC values, Anal. Chem. 81 (2009) 69366943.CrossRefGoogle Scholar
Beltran, J., López, F.J., Hernández, F., Solid-phase microextraction in pesticide residue analysis, J. Chromatogr. A 885 (2000) 389404.CrossRefGoogle ScholarPubMed
Ai, J., Solid phase microextraction for quantitative analysis in nonequilibrium situations, Anal. Chem. 69 (1997) 12301236.CrossRefGoogle Scholar
Wan, H.B., Wong, M.K., Minimization of solvent consumption in pesticide residue analysis, J. Chromatogr. A 754 (1996) 4347.CrossRefGoogle Scholar
Beltran, J., Lopez, F.J., Cepria, O., Hernandez, F., Solid-phase microextraction for quantitative analysis of organophosphorus pesticides in environmental water samples, J. Chromatogr. A 808 (1998) 257263.CrossRefGoogle ScholarPubMed
Eisert, R., Levsen, K., Determination of pesticides in aqueous samples by solid-phase microextraction in-line coupled to gas chromatography-mass spectrometry, J. Am. Soc. Mass Spectrom. 6 (1995) 11191130.CrossRefGoogle ScholarPubMed
Gonçalves, C., Alpendurada, M.F., Solid-phase micro-extraction-gas chromatography-(tandem) mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities, J. Chromatogr. A 1026 (2004) 239250.CrossRefGoogle ScholarPubMed
Vázquez, P.P., Mughari, A.R., Galera, M.M., Solid-phase microextraction (SPME) for the determination of pyrethroids in cucumber and watermelon using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection, Anal. Chim. Acta 607 (2008) 7482.CrossRefGoogle ScholarPubMed
Guillot, S., Kelly, M.T., Fenet, H., Larroque, M., Evaluation of solid-phase microextraction as an alternative to the official method for the analysis of organic micro-pollutants in drinking water, J. Chromatogr. A 1101 (2006) 4652.CrossRefGoogle ScholarPubMed
Fidalgo-Used, N., Centineo, G., Blanco-González, E., Sanz-Medel, A., Solid-phase microextraction as a clean-up and preconcentration procedure for organochlorine pesticides determination in fish tissue by gas chromatography with electron capture detection, J. Chromatogr. A 1017 (2003) 3544.CrossRefGoogle ScholarPubMed
Ostroukhova, O., Zenkevich, I., A comparison of the external standard and standard addition methods for the quantitative chromatographic determination of pesticide concentrations in plant samples, J. Anal. Chem. 61 (2006) 442451.CrossRefGoogle Scholar
Zenkevich, I., Klimova, I., Use of the standard addition method in quantitative chromatographic analysis, J. Anal. Chem. 61 (2006) 967972.CrossRefGoogle Scholar
Bristeau S., Ghestem J.P., Résultats de l’essai interlaboratoires chlordécone et chlordécone-5b-hydro dans les eaux de surface continentales et eaux souterraines, BGRM, Rapp. Final, Rapp. AQUAREF- RP-61916-FR, BRGM, France, 2012.
Woignier, T., Clostre, F., Macarie, H., Jannoyer, M., Chlordecone retention in the fractal structure of volcanic clay, J. Hazard Mater. 241–242 (2012) 224230.CrossRefGoogle ScholarPubMed
Dugay, J., Miège, C., Hennion, M.C., Effect of the various parameters governing solid-phase microextraction for the trace-determination of pesticides in water, J. Chromatogr. A 795 (1998) 2742.CrossRefGoogle Scholar