Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T02:47:07.196Z Has data issue: false hasContentIssue false

TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY

Published online by Cambridge University Press:  21 July 2016

JAMES NEWTON
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK; [email protected]
JACK A. THORNE
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, UK; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct algebras of endomorphisms in the derived category of the cohomology of arithmetic manifolds, which are generated by Hecke operators. We construct Galois representations with coefficients in these Hecke algebras and apply this technique to sharpen recent results of P. Scholze.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2016

References

Ash, A., Doud, D. and Pollack, D., ‘Galois representations with conjectural connections to arithmetic cohomology’, Duke Math. J. 112(3) (2002), 521579.Google Scholar
Bernstein, J. and Lunts, V., Equivariant Sheaves and Functors, Lecture Notes in Mathematics, 1578 (Springer, Berlin, 1994).CrossRefGoogle Scholar
Borel, A. and Serre, J.-P., ‘Corners and arithmetic groups’, Comment. Math. Helv. 48 (1973), 436491. Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault.Google Scholar
Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 261 (Springer, Berlin, 1984), A systematic approach to rigid analytic geometry.Google Scholar
Bousfield, A. K. and Kan, D. M., Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, 304 (Springer, Berlin–New York, 1972).CrossRefGoogle Scholar
Cabanes, M., ‘Irreducible modules and Levi supplements’, J. Algebra 90(1) (1984), 8497.Google Scholar
Calegari, F. and Emerton, M., ‘Completed cohomology—a survey’, inNon-abelian Fundamental Groups and Iwasawa Theory, London Mathematical Society Lecture Note Series, 393 (Cambridge University Press, Cambridge, 2012), 239257.Google Scholar
Calegari, F. and Geraghty, D., Modularity lifting beyond the Taylor–Wiles method. Preprint, available at arXiv:1207.4224 and arXiv:1209.6293.Google Scholar
Cartier, P., ‘Representations of p-adic groups: a survey’, inAutomorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 111155.Google Scholar
Chenevier, G., ‘The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings’, inAutomorphic Forms and Galois Representations, Volume 1, London Mathematical Society Lecture Note Series, 414 (Cambridge University Press, Cambridge, 2014), 221285.CrossRefGoogle Scholar
Clozel, L., ‘Motifs et formes automorphes: applications du principe de fonctorialité’, inAutomorphic Forms, Shimura Varieties, and L-Functions, Vol. I, Ann Arbor, MI, 1988, Perspectives on Mathematics, 10 (Academic Press, Boston, MA, 1990), 77159.Google Scholar
Conrad, B., ‘Reductive group schemes’, inAutour des schémas en groupes, Vol. I, Panoramas et Synthèses, 42/43 (Soc. Math. France, Paris, 2014), 93444.Google Scholar
Curtis, C. W. and Reiner, I., Methods of Representation Theory, Vol. I (Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990), With applications to finite groups and orders. Reprint of the 1981 original. A Wiley-Interscience Publication.Google Scholar
Deligne, P., Cohomologie étale, Lecture Notes in Mathematics, 569 (Springer, Berlin–New York, 1977), Séminaire de Géométrie Algébrique du Bois-Marie SGA $4\frac{1}{2}$ , Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.CrossRefGoogle Scholar
Faltings, G., ‘Arithmetic varieties and rigidity’, inSeminar on Number Theory, Paris 1982–83 (Paris, 1982/1983), Progress in Mathematics, 51 (Birkhäuser Boston, Boston, MA, 1984), 6377.Google Scholar
Gabber, O. and Ramero, L., Almost Ring Theory, Lecture Notes in Mathematics, 1800 (Springer, Berlin, 2003).Google Scholar
Gabriel, P., ‘Des catégories abéliennes’, Bull. Soc. Math. France 90 (1962), 323448.Google Scholar
Grothendieck, A., ‘Sur quelques points d’algèbre homologique’, Tôhoku Math. J. (2) 9 (1957), 119221.Google Scholar
Harris, M., Lan, K.-W., Taylor, R. and Thorne, J. A., On the rigid cohomology of certain unitary Shimura varieties. Preprint, available at arXiv:1411.6717.Google Scholar
Hill, R., ‘On Emerton’s p-adic Banach spaces’, Int. Math. Res. Not. IMRN 2010(18) (2010), 35883632.Google Scholar
Huber, R., ‘A generalization of formal schemes and rigid analytic varieties’, Math. Z. 217(4) (1994), 513551.Google Scholar
Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996).Google Scholar
Iversen, B., Cohomology of Sheaves, Universitext (Springer, Berlin, 1986).CrossRefGoogle Scholar
Jantzen, J. C., Representations of Algebraic Groups, 2nd edn, Mathematical Surveys and Monographs, 107 (American Mathematical Society, Providence, RI, 2003).Google Scholar
Kashiwara, M. and Schapira, P., Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 292 (Springer, Berlin, 1994), With a chapter in French by Christian Houzel, corrected reprint of the 1990 original.Google Scholar
Khare, C. and Thorne, J. A., Potential automorphy and the Leopoldt conjecture. Amer. J. Math., to appear, Preprint, arXiv:1409.7007.Google Scholar
Lan, K.-W. and Suh, J., ‘Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties’, Duke Math. J. 161(6) (2012), 11131170.CrossRefGoogle Scholar
Lan, K.-W. and Suh, J., ‘Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties’, Adv. Math. 242 (2013), 228286.CrossRefGoogle Scholar
Mínguez, A., ‘Unramified representations of unitary groups’, inOn the Stabilization of the Trace Formula, Stab Trace Formula Shimura Var. Arith. Appl., 1 (International Press, Somerville, MA, 2011), 389410.Google Scholar
Mumford, D., Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5 (Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008), With appendices by C. P. Ramanujam and Yuri Manin, corrected reprint of the second (1974) edition.Google Scholar
Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323 (Springer, Berlin, 2000).Google Scholar
Pink, R., Arithmetical Compactification of Mixed Shimura Varieties, Bonner Mathematische Schriften [Bonn Mathematical Publications], 209 (Universität Bonn, Mathematisches Institut, Bonn, 1990), Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989.Google Scholar
Platonov, V. and Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139 (Academic Press, Inc., Boston, MA, 1994), Translated from the 1991 Russian original by Rachel Rowen.Google Scholar
Scholze, P., ‘Perfectoid spaces’, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245313.CrossRefGoogle Scholar
Scholze, P., ‘Perfectoid spaces: a survey’, inCurrent Developments in Mathematics 2012 (International Press, Somerville, MA, 2013), 193227.Google Scholar
Scholze, P., ‘On torsion in the cohomology of locally symmetric varieties’, Ann. of Math. (2) 182(3) (2015), 9451066.CrossRefGoogle Scholar
Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, 270 (Springer, Berlin–New York, 1972), Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.Google Scholar
Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, 305 (Springer, Berlin–New York, 1973), Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.Google Scholar
The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu, 2015.Google Scholar
Tits, J., ‘Reductive groups over local fields’, inAutomorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 2969.Google Scholar
Verdier, J.-L., ‘Dualité dans la cohomologie des espaces localement compacts’, inSéminaire Bourbaki, Vol. 9 (Soc. Math. France, Paris, 1995), 337349. Exp. No. 300.Google Scholar
Vistoli, A., ‘Grothendieck topologies, fibered categories and descent theory’, inFundamental Algebraic Geometry, Mathematical Surveys and Monographs, 123 (American Mathematical Society, Providence, RI, 2005), 1104.Google Scholar
Weibel, C. A., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38 (Cambridge University Press, Cambridge, 1994).Google Scholar
Zimmermann, A., ‘A Noether–Deuring theorem for derived categories’, Glasg. Math. J. 54(3) (2012), 647654.Google Scholar