Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T14:36:16.167Z Has data issue: false hasContentIssue false

SUPERBOSONIZATION VIA RIESZ SUPERDISTRIBUTIONS

Published online by Cambridge University Press:  14 May 2014

ALEXANDER ALLDRIDGE
Affiliation:
Universität zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln, Germany; [email protected]
ZAIN SHAIKH
Affiliation:
Universität Paderborn, Institut für Mathematik, Fakultät EIM, Warburger Str. 100, 33100 Paderborn, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The superbosonization identity of Littelmann, Sommers and Zirnbauer is a new tool for use in studying universality of random matrix ensembles via supersymmetry, which is applicable to non-Gaussian invariant distributions. We give a new conceptual interpretation of this formula, linking it to harmonic superanalysis of Lie supergroups and symmetric superspaces, and in particular, to a supergeneralization of the Riesz distributions. Using the super-Laplace transformation of generalized superfunctions, the theory of which we develop, we reduce the proof to computing the Gindikin gamma function of a Riemannian symmetric superspace, which we determine explicitly.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Copyright
© The Author(s) 2014

References

Alldridge, A., ‘The Harish–Chandra isomorphism for reductive symmetric superpairs’, Transform. Groups 17 (2012), 889919.Google Scholar
Alldridge, A. and Hilgert, J., ‘Invariant Berezin integration on homogeneous supermanifolds’, J. Lie Theory 20 (2010), 6591.Google Scholar
Alldridge, A., Hilgert, J. and Palzer, W., ‘Berezin integration on non-compact supermanifolds’, J. Geom. Phys. 62 (2012), 427448.Google Scholar
Alldridge, A., Hilgert, J. and Wurzbacher, T., ‘Singular superspaces’, Math. Z. (2014), under revision.CrossRefGoogle Scholar
Altland, A. and Zirnbauer, M. R., ‘Nonstandard symmetry classes in mesoscopic normal–superconducting hybrid structures’, Phys. Rev. B 55 (1997), 11421161.Google Scholar
Bredon, G. E., Sheaf Theory, 2nd Edn, (Springer-Verlag, Berlin, New York, 1997).CrossRefGoogle Scholar
Carmeli, C., Caston, L. and Fioresi, R., Mathematical Foundations of Supersymmetry, (European Mathematical Society, Zurich, 2011).Google Scholar
Deligne, P. and Morgan, J. W., ‘Notes on supersymmetry (following Joseph Bernstein)’, in:Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) (Amer. Math. Soc., Providence, RI, 1999), 4197.Google Scholar
Dieudonné, J, Treatise on Analysis. Vol. VI, (Academic Press, New York, 1978).Google Scholar
Efetov, K., Supersymmetry in Disorder and Chaos, (Cambridge University Press, Cambridge, 1997).Google Scholar
Efetov, K., Schwiete, G. and Takahashi, K., ‘Bosonization for disordered and chaotic systems’, Phys. Rev. Lett. 92 (2004), 026807.CrossRefGoogle ScholarPubMed
Ehrenpreis, L., ‘Analytic functions and the Fourier transform of distributions. I’, Ann. of Math. (2) 63 (1956), 129159.Google Scholar
Faraut, J. and Korányi, A., ‘Function spaces and reproducing kernels on bounded symmetric domains’, J. Funct. Anal. 88 (1990), 6489.CrossRefGoogle Scholar
Faraut, J. and Korányi, A., Analysis on Symmetric Cones, (Oxford University Press, Oxford, 1994).Google Scholar
Freed, D. S. and Moore, G. W., ‘Twisted equivariant matter’, Ann. Henri Poincaré (2013), 197.Google Scholar
Fyodorov, Y. V., ‘Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation’, Nuclear Phys. B 621 (2002), 643674.CrossRefGoogle Scholar
Gel’fand, I. M. and Shilov, G. E., Generalized Functions, Vol. 1, (Academic Press, New York, 1964).Google Scholar
Gel’fand, I. M. and Shilov, G. E., Generalized Functions, Vol. 2, (Academic Press, New York, 1977).Google Scholar
Guhr, T., ‘Arbitrary unitarily invariant random matrix ensembles and supersymmetry’, J. Phys. A 39 (2006), 1319113223.Google Scholar
Guillemin, V. W. and Sternberg, S., Supersymmetry and Equivariant De Rham Theory (Springer-Verlag, Berlin, New York, 1999).CrossRefGoogle Scholar
Hackenbroich, G. and Weidenmüller, H., ‘Universality of random-matrix results for non-gaussian ensembles’, Phys. Rev. Lett. 74 (1995), 41184121.CrossRefGoogle ScholarPubMed
Heinzner, P., Huckleberry, A. and Zirnbauer, M. R., ‘Symmetry classes of disordered fermions’, Comm. Math. Phys. 257 (2005), 725771.CrossRefGoogle Scholar
Hilgert, J. and Neeb, K.-H., ‘Vector valued Riesz distributions on Euclidian Jordan algebras’, J. Geom. Anal. 11 (2001), 4375.CrossRefGoogle Scholar
Ingham, A. E., ‘An integral which occurs in statistics’, Proc. Cambridge Philos. Soc. 29 (1933), 271276.Google Scholar
Ishihara, T., ‘On generalized Laplace transforms’, Proc. Japan Acad. 37 (1961), 556561.Google Scholar
Iversen, B., Cohomology of Sheaves, (Springer-Verlag, Berlin, New York, 1986).Google Scholar
Kainz, G., Kriegl, A. and Michor, P., ‘ $C^\infty $ -algebras from the functional analytic viewpoint’, J. Pure Appl. Algebra 46 (1987), 89107.Google Scholar
Kieburg, M., Grönqvist, J. and Guhr, T., ‘Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary–symplectic case’, J. Phys. A 42 (2009), 275205, 31.Google Scholar
Kieburg, M., Sommers, H.-J. and Guhr, T., ‘A comparison of the superbosonization formula and the generalized Hubbard–Stratonovich transformation’, J. Phys. A. 42 (2009), 275206, 23.Google Scholar
Lehmann, N., D., Saher, Sokolov, V. V. and Sommers, H.-J., ‘Chaotic scattering—the supersymmetry method for large number of channels’, Nucl. Phys. A 582 (1995), 223256.CrossRefGoogle Scholar
Leĭtes, D. A., ‘Introduction to the theory of supermanifolds’, Uspekhi Mat. Nauk 35 (1980), 3–57, 255.Google Scholar
Littelmann, P., Sommers, H.-J. and Zirnbauer, M. R., ‘Superbosonization of invariant random matrix ensembles’, Comm. Math. Phys. 283 (2008), 343395.Google Scholar
MacLane, S., Categories for the Working Mathematician, 2nd Edn, (Springer-Verlag, Berlin, New York, 1998).Google Scholar
Manin, Y. I., Gauge Field Theory and Complex Geometry, (Springer-Verlag, Berlin, New York, 1988).Google Scholar
Meise, R. and Vogt, D., Introduction to Functional Analysis, (Oxford University Press, Oxford, 1997).Google Scholar
Mitiagin, B., Rolewicz, S. and Żelazko, W., ‘Entire functions in $B_{0}$ -algebras’, Studia Math. 21 (1961/2), 291306.Google Scholar
Paradan, P.-E., ‘Symmetric spaces of the non-compact type: Lie groups’, in:Géométries à courbure négative ou nulle, groupes discrets et rigidités, Séminaire Congrés vol. 18 (Soc. Math. France, Paris, 2009), 3976.Google Scholar
Schaefer, H. H., Topological Vector Spaces, (Springer-Verlag, Berlin, New York, 1971).Google Scholar
Schäfer, L. and Wegner, F., ‘Disordered system with $n$ orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes’, Z. Phys. B 38 (1980), 113126.Google Scholar
Schwartz, L., Théorie des distributions. Tome II. Hermann, Paris 1951.Google Scholar
Schwartz, L., ‘Transformation de Laplace des distributions’, Medd. Lunds Univ. Mat. Sem. 1952 (1952), 196206. Tôme Supplémentaire.Google Scholar
Siegel, C. L., ‘Über die analytische Theorie der quadratischen Formen’, Ann. of Math. (2) 36 (1935), 527606.CrossRefGoogle Scholar
Sommers, H.-J., ‘Superbosonization’, Acta Phys. Polon. B 38 (2007), 41054110.Google Scholar
Spivak, M., A Comprehensive Introduction to Differential Geometry, Vol. I, (Publish or Perish Inc., Houston, TX, 1979).Google Scholar
Trèves, F., Topological Vector Spaces, Distributions, and Kernels, (Academic Press, New York, London, 1967).Google Scholar
Vergne, M. and Rossi, H., ‘Analytic continuation of the holomorphic discrete series of a semi-simple Lie group’, Acta Math. 136 (1976), 159.CrossRefGoogle Scholar
Zirnbauer, M. R., ‘Fourier analysis on a hyperbolic supermanifold with constant curvature’, Comm. Math. Phys. 141 (1991), 503522.Google Scholar
Zirnbauer, M. R., ‘Super Fourier analysis and localization in disordered wires’, Phys. Rev. Lett. 69 (1992), 15841587.Google Scholar
Zirnbauer, M. R., ‘Riemannian symmetric superspaces and their origin in random-matrix theory’, J. Math. Phys. 37 (1996), 49865018.Google Scholar