Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T07:37:40.408Z Has data issue: false hasContentIssue false

SHORT TIME FULL ASYMPTOTIC EXPANSION OF HYPOELLIPTIC HEAT KERNEL AT THE CUT LOCUS

Published online by Cambridge University Press:  10 July 2017

YUZURU INAHAMA
Affiliation:
Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; [email protected]
SETSUO TANIGUCHI
Affiliation:
Faculty of Arts and Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove a short time asymptotic expansion of a hypoelliptic heat kernel on a Euclidean space and a compact manifold. We study the ‘cut locus’ case, namely, the case where energy-minimizing paths which join the two points under consideration form not a finite set, but a compact manifold. Under mild assumptions we obtain an asymptotic expansion of the heat kernel up to any order. Our approach is probabilistic and the heat kernel is regarded as the density of the law of a hypoelliptic diffusion process, which is realized as a unique solution of the corresponding stochastic differential equation. Our main tools are S. Watanabe’s distributional Malliavin calculus and T. Lyons’ rough path theory.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2017

References

Aida, S., ‘Vanishing of one-dimensional L 2 -cohomologies of loop groups’, J. Funct. Anal. 261 (2011), 21642213.CrossRefGoogle Scholar
Bailleul, I., ‘Flows driven by rough paths’, Rev. Mat. Iberoam. 31 (2015), 901934.CrossRefGoogle Scholar
Barilari, D., Boscain, U. and Neel, R., ‘Small-time heat kernel asymptotics at the sub-Riemannian cut locus’, J. Differential Geom. 92 (2012), 373416.CrossRefGoogle Scholar
Barilari, D. and Jendrej, J., ‘Small time heat kernel asymptotics at the cut locus on surfaces of revolution’, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 281295.CrossRefGoogle Scholar
Baudoin, F. and Wang, J., ‘The subelliptic heat kernel on the CR sphere’, Math. Z. 275 (2013), 135150.CrossRefGoogle Scholar
Beals, R., Gaveau, B. and Greiner, P. C., ‘Hamilton–Jacobi theory and the heat kernel on Heisenberg groups’, J. Math. Pures Appl. 79 (2000), 633689.CrossRefGoogle Scholar
Ben Arous, G., ‘Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus’, Ann. Sci. Éc. Norm. Supér. 21 (1988), 307331.CrossRefGoogle Scholar
Bismut, J.-M., Large Deviations and the Malliavin Calculus, Progress in Mathematics, 45 (Birkhäuser Boston, Inc., Boston, MA, 1984).Google Scholar
Bogachev, V., Gaussian Measures (American Mathematical Society, Providence, RI, 1998).CrossRefGoogle Scholar
Brockett, R. W. and Mansouri, A., ‘Short-time asymptotics of heat kernels for a class of hypoelliptic operators’, Amer. J. Math. 131 (2009), 17951814.CrossRefGoogle Scholar
Calin, O. and Chang, D.-C., ‘Sub-Riemannian geometry’, inGeneral Theory and Examples (Cambridge University Press, Cambridge, 2009).Google Scholar
Chang, D.-C. and Li, Y., ‘Heat kernel asymptotic expansions for the Heisenberg sub-Laplacian and the Grushin operator’, Proc. A. 471(2175) (2015), 20140943, 19 pp.Google ScholarPubMed
Chang, D.-C., Markina, I. and Vasil’ev, A., ‘Hopf fibration: geodesics and distances’, J. Geom. Phys. 61(6) (2011), 9861000.CrossRefGoogle Scholar
Deuschel, J. D., Friz, P. K., Jacquier, A. and Violante, S., ‘Marginal density expansions for diffusions and stochastic volatility I: theoretical foundations’, Comm. Pure Appl. Math. 67 (2014), 4082.CrossRefGoogle Scholar
Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR Manifolds (Birkhäuser Boston, Inc., Boston, MA, 2006).Google Scholar
Friz, P. and Victoir, N., Multidimensional Stochastic Processes as Rough Paths (Cambridge University Press, Cambridge, 2010).CrossRefGoogle Scholar
Gaveau, B., ‘Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents’, Acta Math. 139 (1977), 95153.CrossRefGoogle Scholar
Grong, E. and Thalmaier, A., ‘Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations, Part I’, Math. Z. 282 (2016), 99130.CrossRefGoogle Scholar
Hsu, E. P., Stochastic Analysis on Manifolds (American Mathematical Society, Providence, RI, 2002).CrossRefGoogle Scholar
Hu, Y., Analysis on Gaussian Spaces (World Scientific, Singapore, 2017).Google Scholar
Ikeda, N., ‘Probabilistic methods in the study of asymptotics’, inÉcole d’été de Probabilistés de Saint-Flour XVIII, 1988, Lecture Notes in Mathematics, 1427 (Springer, Berlin, 1990), 195325.CrossRefGoogle Scholar
Ikeda, N. and Watanabe, S., Stochastic Differential Equations and Diffusion Processes, 2nd edn (North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989).Google Scholar
Inahama, Y., ‘Quasi-sure existence of Brownian rough paths and a construction of Brownian pants’, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), 513528.CrossRefGoogle Scholar
Inahama, Y., ‘A stochastic Taylor-like expansion in the rough path theory’, J. Theoret. Probab. 23 (2010), 671714.CrossRefGoogle Scholar
Inahama, Y., ‘Large deviation principle of Freidlin–Wentzell type for pinned diffusion processes’, Trans. Amer. Math. Soc. 367 (2015), 81078137.CrossRefGoogle Scholar
Inahama, Y., ‘Short time kernel asymptotics for rough differential equation driven by fractional Brownian motion’, Electron. J. Probab. 21 (2016), Paper No. 34, 29 pp.CrossRefGoogle Scholar
Inahama, Y., ‘Large deviations for rough path lifts of Watanabe’s pullbacks of delta functions’, Int. Math. Res. Not. IMRN 2016 (2016), 63786414.CrossRefGoogle Scholar
Inahama, Y. and Kawabi, K., ‘Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths’, J. Funct. Anal. 243 (2007), 270322.CrossRefGoogle Scholar
Kondo, H. and Taniguchi, S., ‘A construction of diffusion processes associated with sub-Laplacian on CR manifolds and its applications’, J. Math. Soc. Japan 69 (2017), 111125.CrossRefGoogle Scholar
Kusuoka, S. and Stroock, D. W., ‘Applications of the Malliavin calculus. II’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 176.Google Scholar
Kusuoka, S. and Stroock, D. W., ‘Precise asymptotics of certain Wiener functionals’, J. Funct. Anal. 99 (1991), 174.CrossRefGoogle Scholar
Kusuoka, S. and Stroock, D. W., ‘Asymptotics of certain Wiener functionals with degenerate extrema’, Comm. Pure Appl. Math. 47 (1994), 477501.CrossRefGoogle Scholar
Ludewig, M., ‘Strong short time asymptotics and convolution approximation of the heat kernel’, Preprint 2016, arXiv:1607.05152.Google Scholar
Lyons, T., Caruana, M. and Lévy, T., Differential Equations Driven by Rough Paths, Lecture Notes in Mathematics, 1908 (Springer, Berlin, 2007).CrossRefGoogle Scholar
Lyons, T. and Qian, Z., System Control and Rough Paths (Oxford University Press, Oxford, 2002).CrossRefGoogle Scholar
Malliavin, P., Stochastic Analysis (Springer, Berlin, 1997).CrossRefGoogle Scholar
Matsumoto, H. and Taniguchi, S., Stochastic Analysis: Itô and Malliavin Calculus in Tandem (Cambridge University Press, Cambridge, 2017).Google Scholar
Molchanov, S. A., ‘Diffusion processes, and Riemannian geometry’, Russian Math. Surveys 30 (1975), 163.CrossRefGoogle Scholar
Molina, M. and Markina, I., ‘Sub-Riemannian geodesics and heat operator on odd dimensional spheres’, Anal. Math. Phys. 2 (2012), 123147.CrossRefGoogle Scholar
Montgomery, R., A Tour of Subriemannian Geometries, their Geodesics and Applications, (American Mathematical Society, Providence, RI, 2002).Google Scholar
Nualart, D., The Malliavin Calculus and Related Topics, 2nd edn (Springer, Berlin, 2006).Google Scholar
Rifford, L., Sub-Riemannian Geometry and Optimal Transport, Springer Briefs in Mathematics (Springer, Cham, 2014).CrossRefGoogle Scholar
Séguin, C. and Mansouri, A., ‘Short-time asymptotics of heat kernels of hypoelliptic Laplacians on unimodular Lie groups’, J. Funct. Anal. 262 (2012), 38913928.CrossRefGoogle Scholar
Shigekawa, I., ‘Stochastic analysis’, inTranslations of Mathematical Monographs, Vol. 224, Iwanami Series in Modern Mathematics (American Mathematical Society, Providence, RI, 2004).Google Scholar
Stroock, D. W., An Introduction to the Analysis of Paths on a Riemannian Manifold (American Mathematical Society, Providence, 2000).Google Scholar
Sugita, H., ‘Positive generalized Wiener functions and potential theory over abstract Wiener spaces’, Osaka J. Math. 25 (1988), 665696.Google Scholar
Takanobu, S. and Watanabe, S., ‘Asymptotic expansion formulas of the Schilder type for a class of conditional Wiener functional integrations’, inAsymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics (Sanda/Kyoto, 1990), Pitman Research Notes in Mathematics Series, 284 (Longman Sci. Tech., Harlow, 1993), 194241.Google Scholar
Taniguchi, S., ‘Malliavin’s stochastic calculus of variations for manifold-valued Wiener functionals and its applications’, Z. Wahrsch. Verw. Gebiete 65 (1983), 269290.CrossRefGoogle Scholar
Uemura, H., ‘Off-diagonal short time expansion of the heat kernel on a certain nilpotent Lie group’, Kyoto J. Math. 30 (1990), 403449.CrossRefGoogle Scholar
Uemura, H. and Watanabe, S., ‘Diffusion processes and heat kernels on certain nilpotent groups’, inStochastic Analysis (Paris, 1987), Lecture Notes in Mathematics, 1322 (Springer, Berlin, 1988), 173197.CrossRefGoogle Scholar
Watanabe, S., Lectures on Stochastic Differential Equations and Malliavin Calculus (Tata Institute of Fundamental Research, Bombay, Springer, Berlin, 1984).Google Scholar
Watanabe, S., ‘Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels’, Ann. Probab. 15 (1987), 139.CrossRefGoogle Scholar
Yoshida, N., ‘Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin–Watanabe’, Probab. Theory Related Fields 92 (1992), 275311.CrossRefGoogle Scholar