Article contents
ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS
Published online by Cambridge University Press: 14 January 2019
Abstract
We prove a lower bound on the entropy of sphere packings of $\mathbb{R}^{d}$ of density $\unicode[STIX]{x1D6E9}(d\cdot 2^{-d})$. The entropy measures how plentiful such packings are, and our result is significantly stronger than the trivial lower bound that can be obtained from the mere existence of a dense packing. Our method also provides a new, statistical-physics-based proof of the $\unicode[STIX]{x1D6FA}(d\cdot 2^{-d})$ lower bound on the maximum sphere packing density by showing that the expected packing density of a random configuration from the hard sphere model is at least $(1+o_{d}(1))\log (2/\sqrt{3})d\cdot 2^{-d}$ when the ratio of the fugacity parameter to the volume covered by a single sphere is at least $3^{-d/2}$. Such a bound on the sphere packing density was first achieved by Rogers, with subsequent improvements to the leading constant by Davenport and Rogers, Ball, Vance, and Venkatesh.
MSC classification
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s) 2019
References
- 11
- Cited by