Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:17:46.843Z Has data issue: false hasContentIssue false

Minimal definable graphs of definable chromatic number at least three

Published online by Cambridge University Press:  28 January 2021

Raphaël Carroy
Affiliation:
Raphaël Carroy, Dipartimento di Matematica “Giuseppe Peano”, Università degli studi di Torino Palazzo Campana, Via Carlo Alberto 10, 10123Torino, Italy, E-mail: [email protected]; http://www.logique.jussieu.fr/~carroy/indexeng.html
Benjamin D. Miller
Affiliation:
University of Vienna, Department of Mathematics, Oskar Morgenstern Platz 1, Wien1090, Austria, E-mail: [email protected]; https://homepage.univie.ac.at/benjamin.miller/
David Schrittesser
Affiliation:
University of Vienna, Department of Mathematics, Oskar Morgenstern Platz 1, Wien1090, Austria, E-mail: [email protected]; http://homepage.univie.ac.at/david.schrittesser/
Zoltán Vidnyánszky
Affiliation:
University of Vienna, Department of Mathematics, Oskar Morgenstern Platz 1, Wien1090, Austria; and California Institute of Technology, Department of Mathematics, Pasadena, CA91125, E-mail: [email protected]; http://www.logic.univie.ac.at/~vidnyanszz77/

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that there is a Borel graph on a standard Borel space of Borel chromatic number three that admits a Borel homomorphism to every analytic graph on a standard Borel space of Borel chromatic number at least three. Moreover, we characterize the Borel graphs on standard Borel spaces of vertex-degree at most two with this property and show that the analogous result for digraphs fails.

Type
Foundations
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Babai, L.. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 684697. ACM, 2016.CrossRefGoogle Scholar
Bernshteyn, A.. Measurable versions of the Lovász local lemma and measurable graph colorings. arXiv preprint arXiv:1604.07349, 2016.Google Scholar
Carroy, R., Miller, B.D., Schrittesser, D. and Vidnyanszky, Z.. Minimal definable graphs with no definable two-colorings. 2018. http://www.logic.univie.ac.at/~vidnyanszz77/summary2.pdf. Google Scholar
Clemens, J.D., Conley, C.T. and Miller, B.D.. The smooth ideal. Proc. Lond. Math. Soc. (3), 112(1):5780, 2016.CrossRefGoogle Scholar
Clemens, J.D., Lecomte, D. and Miller, B.D.. Essential countability of treeable equivalence relations. Adv. Math., 265:131, 2014.CrossRefGoogle Scholar
Conley, C.T. and Kechris, A.S.. Measurable chromatic and independence numbers for ergodic graphs and group actions. Groups Geom. Dyn., 7(1):127180, 2013.CrossRefGoogle Scholar
Conley, C.T. and Miller, B.D.. An antibasis result for graphs of infinite Borel chromatic number. Proc. Amer. Math. Soc., 142(6):21232133, 2014.CrossRefGoogle Scholar
Csóka, E., Grabowski, Ł., Máthé, A., Pikhurko, O. and Tyros, K.. Borel version of the local lemma. arXiv preprint arXiv:1605.04877, 2016.Google Scholar
El-Zahar, M. and Sauer, N.W.. The chromatic number of the product of two $4$ -chromatic graphs is $4$ . Combinatorica, 5(2):121126, 1985.CrossRefGoogle Scholar
Gao, S.. Invariant descriptive set theory, volume 293 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2009.Google Scholar
Harrington, L.A., Kechris, A.S. and Louveau, A.. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 3(4):903928, 1990.CrossRefGoogle Scholar
Kechris, A S.. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics . Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
Kechris, A.S. and Marks, A.S.. Descriptive graph combinatorics. 2015. http://math.ucla.edu/~marks/.Google Scholar
Kechris, A.S., Solecki, S. and Todorcevic, S.. Borel chromatic numbers. Adv. Math., 141(1):144, 1999.CrossRefGoogle Scholar
Lecomte, D. and Zeleny, M.. Baire-class $\xi$ colorings: the first three levels. Trans. Amer. Math. Soc., 366(5):23452373, 2014.CrossRefGoogle Scholar
Lecomte, D. and Zeleny, M.. Analytic digraphs of uncountable Borel chromatic number under injective definable homomorphism. arXiv preprint arXiv:1811.04738, 2018.Google Scholar
Marks, A.S.. A determinacy approach to Borel combinatorics. J. Amer. Math. Soc., 29(2):579600, 2016.CrossRefGoogle Scholar
Marks, A.S. and Unger, S.T.. Borel circle squaring. Ann. of Math. (2), 186(2):581605, 2017.CrossRefGoogle Scholar
Miller, B.D.. The graph-theoretic approach to descriptive set theory. Bull. Symbolic Logic, 18(4):554575, 2012.CrossRefGoogle Scholar
Miller, B.D.. An introduction to classical descriptive set theory. Lecture notes, 2015.Google Scholar
Miller, B.D.. Lacunary sets and actions of tsi groups. Preprint, 2018.Google Scholar
Miller, B.D. and Vidnyánszky, Z.. On the existence of large antichains for definable quasi-orders. J. Symb. Log., 85(1):103108, 2020.CrossRefGoogle Scholar
Pequignot, Y.. Finite versus infinite: an insufficient shift. Adv. Math., 320(1):244249, 2017.CrossRefGoogle Scholar
Shitov, Y.. Counterexamples to Hedetniemi’s conjecture. arXiv preprint arXiv:1905.02167, 2019.Google Scholar
Todorčević, S. and Vidnyanszky, Z.. A complexity problem for Borel graphs. submitted, 2017.Google Scholar