Article contents
Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings
Published online by Cambridge University Press: 11 January 2021
Abstract
The elliptic algebras in the title are connected graded
$\mathbb {C}$-algebras, denoted
$Q_{n,k}(E,\tau )$, depending on a pair of relatively prime integers
$n>k\ge 1$, an elliptic curve E and a point
$\tau \in E$. This paper examines a canonical homomorphism from
$Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring
$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety
$X_{n/k}$ for
$Q_{n,k}(E,\tau )$. When
$X_{n/k}$ is isomorphic to
$E^g$ or the symmetric power
$S^gE$, we show that the homomorphism
$Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for
$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees
$\le 3$ and the noncommutative scheme
$\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to
$E^g$ or
$S^gE$, respectively. When
$X_{n/k}=E^g$ and
$\tau =0$, the results about
$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism
$\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds
$E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.
MSC classification
- Type
- Algebra
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline23.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline24.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline25.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline26.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline27.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline28.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline29.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline30.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline31.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline32.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline33.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline34.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline35.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210108162230186-0068:S2050509420000602:S2050509420000602_inline36.png?pub-status=live)
- 3
- Cited by