Published online by Cambridge University Press: 10 December 2017
We use concepts of continuous higher randomness, developed in Bienvenu et al. [‘Continuous higher randomness’, J. Math. Log. 17(1) (2017).], to investigate $\unicode[STIX]{x1D6F1}_{1}^{1}$-randomness. We discuss lowness for $\unicode[STIX]{x1D6F1}_{1}^{1}$-randomness, cupping with $\unicode[STIX]{x1D6F1}_{1}^{1}$-random sequences, and an analogue of the Hirschfeldt–Miller characterization of weak 2-randomness. We also consider analogous questions for Cohen forcing, concentrating on the class of $\unicode[STIX]{x1D6F4}_{1}^{1}$-generic reals.