Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T05:16:48.885Z Has data issue: false hasContentIssue false

ENGEL RELATIONS IN 4-MANIFOLD TOPOLOGY

Published online by Cambridge University Press:  16 August 2016

MICHAEL FREEDMAN
Affiliation:
Microsoft Station Q, University of California, Santa Barbara, CA 93106-6105, USA; [email protected]
VYACHESLAV KRUSHKAL
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give two applications of the 2-Engel relation, classically studied in finite and Lie groups, to the 4-dimensional (4D) topological surgery conjecture. The A–B slice problem, a reformulation of the surgery conjecture for free groups, is shown to admit a homotopy solution. We also exhibit a new collection of universal surgery problems, defined using ramifications of homotopically trivial links. More generally we show how $n$ -Engel relations arise from higher-order double points of surfaces in 4-space.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2016

References

Burnside, W., ‘On groups in which every two conjugate operations are permutable’, Proc. Lond. Math. Soc. (3) 35 (1902), 2837.Google Scholar
Cappell, S., ‘A splitting theorem for manifolds and surgery groups’, Bull. Amer. Math. Soc. (N.S.) 77 (1971), 281286.CrossRefGoogle Scholar
Casson, A., Three Lectures on New Infinite Constructions in 4-Dimensional Manifolds, Progress in Mathematics, 62, À la recherche de la topologie perdue (Birkhäuser, Boston, MA, 1986), 201244. With an appendix by L. Siebenmann.Google Scholar
Casson, A. and Freedman, M., ‘Atomic surgery problems’, inFour-Manifold Theory (Durham, NH, 1982), Contemporary Mathematics, 35 (American Mathematical Society, Providence, RI, 1984), 181199.Google Scholar
Cha, J. C. and Powell, M., ‘Casson towers and slice links’, Preprint, 2014, arXiv:1411.1621.Google Scholar
Cochran, T. D., Derivatives of Links: Milnor’s Concordance Invariants and Massey’s Products, Mem. Amer. Math. Soc., 84 (1990), no. 427, x+73 pp.Google Scholar
Freedman, M., ‘The topology of four-dimensional manifolds’, J. Differential Geom. 17 (1982), 357453.Google Scholar
Freedman, M., ‘A surgery sequence in dimension four; the relations with knot concordance’, Invent. Math. 68 (1982), 195226.Google Scholar
Freedman, M., ‘The disk theorem for four-dimensional manifolds’, Proceedings ICM Warsaw (1983), 647663.Google Scholar
Freedman, M., ‘A geometric reformulation of four dimensional surgery’, Topol. Appl. 24 (1986), 133141.Google Scholar
Freedman, M., ‘Are the Borromean rings (A, B)-slice?’, Topol. Appl. 24 (1986), 143145.Google Scholar
Freedman, M. and Krushkal, V., ‘Topological arbiters’, J. Topol. 5 (2012), 226247.Google Scholar
Freedman, M. and Lin, X. S., ‘On the (A, B)-slice problem’, Topology 28 (1989), 91110.Google Scholar
Freedman, M. and Quinn, F., Topology of 4-Manifolds, Princeton Mathematical Series, 39 (Princeton University Press, Princeton, NJ, 1990), viii+259 pp.Google Scholar
Freedman, M. and Teichner, P., ‘4-Manifold topology I: subexponential groups’, Invent. Math. 122 (1995), 509529.Google Scholar
Freedman, M. and Teichner, P., ‘4-Manifold topology II: Dwyer’s filtration and surgery kernels’, Invent. Math. 122 (1995), 531557.Google Scholar
Giffen, C., ‘Link concordance implies link homotopy’, Math. Scand. 45 (1979), 243254.Google Scholar
Goldsmith, D., ‘Concordance implies homotopy for classical links in S 3 ’, Comment. Math. Helv. 54 (1979), 347355.Google Scholar
Gompf, R. E. and Stipsicz, A. I., 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics, 20 (American Mathematical Society, Providence, RI, 1999).CrossRefGoogle Scholar
Hass, J., Snoeyink, J. and Thurston, W. P., ‘The size of spanning disks for polygonal curves’, Discrete Comput. Geom. 29(1) (2003), 117.Google Scholar
Havas, G. and Vaughan-Lee, M. R., ‘4-Engel groups are locally nilpotent’, Internat. J. Algebra Comput. 15 (2005), 649682.Google Scholar
Heineken, H., ‘Engelsche Elemente der Lánge drei’, Illinois J. Math. 5 (1961), 681707.Google Scholar
Hopkins, C., ‘Finite groups in which conjuate operations are commutative’, Amer. J. Math. 51 (1929), 3541.Google Scholar
Kirby, R. and Siebenmann, L., Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Annals of Mathematics Studies, 88 (Princeton University Press, Princeton, NJ, 1977).CrossRefGoogle Scholar
Krushkal, V., ‘Additivity properties of Milnor’s 𝜇̄-invariants’, J. Knot Theory Ramifications 7 (1998), 625637.CrossRefGoogle Scholar
Krushkal, V., ‘A counterexample to the strong version of Freedman’s conjecture’, Ann. of Math. (2) 168 (2008), 675693.Google Scholar
Krushkal, V., ‘‘Slicing’ the Hopf link’, Geom. Topol. 19 (2015), 16571683.Google Scholar
Krushkal, V. and Quinn, F., ‘Subexponential groups in 4-manifold topology’, Geom. Topol. 4 (2000), 407430.Google Scholar
Levi, F. W., ‘Groups in which the commutator operation satisfies certain algebraic conditions’, J. Indian Math. Soc. (N.S.) 6 (1942), 8797.Google Scholar
Magnus, W., Karrass, A. and Solitar, D., Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, (Interscience Publishers, New York–London–Sydney, 1966).Google Scholar
Milnor, J., ‘Link groups’, Ann. of Math. (2) 59 (1954), 177195.Google Scholar
Milnor, J., ‘Isotopy of links’, inAlgebraic Geometry and Topology (Princeton University Press, Princeton, NJ, 1957), 280306.Google Scholar
Stallings, J., ‘Whitehead torsion of free products’, Ann. of Math. (2) 82 (1965), 354363.Google Scholar
Traustason, G., ‘Engel groups’, inGroups St. Andrews 2009 in Bath, Vol. 2, London Mathematical Society Lecture Note Series, 388 (Cambridge University Press, Cambridge, 2011), 520550.Google Scholar
Wall, C. T. C., ‘Poincaré complexes I’, Ann. of Math. (2) 86 (1967), 213245.Google Scholar
Wall, C. T. C., Surgery on Compact Manifolds, London Mathematical Society Monographs, 1 (Academic Press, London–New York, 1970).Google Scholar