Article contents
DICHROMATIC NUMBER AND FRACTIONAL CHROMATIC NUMBER
Published online by Cambridge University Press: 15 December 2016
Abstract
The dichromatic number of a graph $G$ is the maximum integer $k$ such that there exists an orientation of the edges of $G$ such that for every partition of the vertices into fewer than $k$ parts, at least one of the parts must contain a directed cycle under this orientation. In 1979, Erdős and Neumann-Lara conjectured that if the dichromatic number of a graph is bounded, so is its chromatic number. We make the first significant progress on this conjecture by proving a fractional version of the conjecture. While our result uses a stronger assumption about the fractional chromatic number, it also gives a much stronger conclusion: if the fractional chromatic number of a graph is at least $t$ , then the fractional version of the dichromatic number of the graph is at least ${\textstyle \frac{1}{4}}t/\log _{2}(2et^{2})$ . This bound is best possible up to a small constant factor. Several related results of independent interest are given.
MSC classification
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s) 2016
References
- 6
- Cited by