Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T22:05:17.688Z Has data issue: false hasContentIssue false

COMPATIBLE SYSTEMS OF GALOIS REPRESENTATIONS ASSOCIATED TO THE EXCEPTIONAL GROUP $E_{6}$

Published online by Cambridge University Press:  06 February 2019

GEORGE BOXER
Affiliation:
Department of Mathematics, University of Chicago, 5734 S University Ave Chicago, IL 60637, USA; [email protected], [email protected], [email protected]
FRANK CALEGARI
Affiliation:
Department of Mathematics, University of Chicago, 5734 S University Ave Chicago, IL 60637, USA; [email protected], [email protected], [email protected]
MATTHEW EMERTON
Affiliation:
Department of Mathematics, University of Chicago, 5734 S University Ave Chicago, IL 60637, USA; [email protected], [email protected], [email protected]
BRANDON LEVIN
Affiliation:
Department of Mathematics, University of Arizona, 617 N. Santa Rita Avenue, Tucson, Arizona 85721, USA; [email protected]
KEERTHI MADAPUSI PERA
Affiliation:
Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA; [email protected]
STEFAN PATRIKIS
Affiliation:
Department of Mathematics, The University of Utah, 155 S 1400 E, Salt Lake City, UT 84112, USA; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2019

References

Adams, J. and He, X., ‘Lifting of elements of Weyl groups’, 2016, MR 3659328.Google Scholar
Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., ‘Potential automorphy and change of weight’, Ann. of Math. (2) 179(2) (2014), 501609.Google Scholar
Caraiani, A., ‘Local-global compatibility and the action of monodromy on nearby cycles’, Duke Math. J. 161(12) (2012), 23112413.Google Scholar
Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups (Oxford University Press, Eynsham, 1985), Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray.Google Scholar
Clozel, L., Harris, M. and Taylor, R., ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. (108) (2008), 1181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras, MR 2470687.Google Scholar
Collingwood, D. H. and McGovern, W. M., Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series (Van Nostrand Reinhold Co., New York, 1993).Google Scholar
Deligne, P., Milne, J. S., Ogus, A. and Shih, K.-y., Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, 900 (Springer, Berlin, 1982).Google Scholar
Dettweiler, M. and Reiter, S., ‘Rigid local systems and motives of type G 2 ’, Compos. Math. 146(4) (2010), 929963. With an appendix by Michael Dettweiler and Nicholas M. Katz.Google Scholar
Fontaine, J.-M. and Mazur, B., ‘Geometric Galois representations’, inElliptic Curves, Modular Forms, & Fermat’s Last Theorem (Hong Kong, 1993), Ser. Number Theory, I (Int. Press, Cambridge, MA, 1995), 4178.Google Scholar
Gross, B. H., ‘On minuscule representations and the principal SL2 ’, Represent. Theory 4 (2000), 225244 (electronic).Google Scholar
Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, 151 (Princeton University Press, Princeton, NJ, 2001), With an appendix by Vladimir G. Berkovich.Google Scholar
Kisin, M., ‘Potentially semi-stable deformation rings’, J. Amer. Math. Soc. 21(2) (2008), 513546.Google Scholar
Khare, C. and Wintenberger, J.-P., ‘Serre’s modularity conjecture. I’, Invent. Math. 178(3) (2009), 485504.Google Scholar
Khare, C. and Wintenberger, J.-P., ‘Serre’s modularity conjecture. II’, Invent. Math. 178(3) (2009), 505586.Google Scholar
Larsen, M., ‘Maximality of Galois actions for compatible systems’, Duke Math. J. 80(3) (1995), 601630.Google Scholar
Larsen, M. and Pink, R., ‘On l-independence of algebraic monodromy groups in compatible systems of representations’, Invent. Math. 107(3) (1992), 603636.Google Scholar
Lurie, J., ‘On simply laced Lie algebras and their minuscule representations’, Comment. Math. Helv. 76(3) (2001), 515575.Google Scholar
Malle, G., ‘Exceptional groups of Lie type as Galois groups’, J. reine angew. Math. 392 (1988), 70109.Google Scholar
McKay, W. G. and Patera, J., Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras, Lecture Notes in Pure and Applied Mathematics, 69 (Marcel Dekker, Inc., New York, 1981).Google Scholar
Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields, 2nd edn, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323 (Springer, Berlin, 2008).Google Scholar
Patrikis, S., ‘Deformations of Galois representations and exceptional monodromy’, Invent. Math. 205(2) (2016), 269336.Google Scholar
Patrikis, S., ‘Deformations of Galois representations and exceptional monodromy, II: raising the level’, Math. Ann. 368(3–4) (2017), 14651491.Google Scholar
Ramakrishna, R., ‘Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur’, Ann. of Math. (2) 156(1) (2002), 115154.Google Scholar
Roberts, D., ‘Newforms with rational coefficients’, Ramanujan J. (2017), to appear, MR 3826758.Google Scholar
Scholl, A. J., ‘Motives for modular forms’, Invent. Math. 100(2) (1990), 419430.Google Scholar
Serre, J.-P., ‘Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques’, inMotives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55 (Amer. Math. Soc., Providence, RI, 1994), 377400.Google Scholar
Serre, J.-P., Topics in Galois Theory, 2nd edn, Research Notes in Mathematics, 1 (A. K. Peters, Ltd., Wellesley, MA, 2008), With notes by Henri Darmon.Google Scholar
Shin, S. W., ‘Galois representations arising from some compact Shimura varieties’, Ann. of Math. (2) 173(3) (2011), 16451741.Google Scholar
Taylor, R., ‘The image of complex conjugation in l-adic representations associated to automorphic forms’, Algebra Number Theory 6(3) (2012), 405435.Google Scholar
Taylor, R. and Yoshida, T., ‘Compatibility of local and global Langlands correspondences’, J. Amer. Math. Soc. 20(2) (2007), 467493.Google Scholar
Tits, J., ‘Normalisateurs de tores. I. Groupes de Coxeter étendus’, J. Algebra 4 (1966), 96116.Google Scholar
Yun, Z., ‘Motives with exceptional Galois groups and the inverse Galois problem’, Invent. Math. 196(2) (2014), 267337.Google Scholar