Article contents
ANALYTIC EQUIVALENCE RELATIONS SATISFYING HYPERARITHMETIC-IS-RECURSIVE
Published online by Cambridge University Press: 27 April 2015
Abstract
We prove, in $\text{ZF}+\boldsymbol{{\it\Sigma}}_{2}^{1}$-determinacy, that, for any analytic equivalence relation $E$, the following three statements are equivalent: (1) $E$ does not have perfectly many classes, (2) $E$ satisfies hyperarithmetic-is-recursive on a cone, and (3) relative to some oracle, for every equivalence class $[Y]_{E}$ we have that a real $X$ computes a member of the equivalence class if and only if ${\it\omega}_{1}^{X}\geqslant {\it\omega}_{1}^{[Y]}$. We also show that the implication from (1) to (2) is equivalent to the existence of sharps over $ZF$.
MSC classification
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author 2015
References
- 3
- Cited by