1 Introduction
1.1 Stable pairs
Let X be a nonsingular projective threefold. A stable pair $(F,s)$ on X is a coherent sheaf F on X and a section $s\in H^{0}(X,F)$ satisfying the following stability conditions:
-
• F is pure of dimension 1,
-
• the section $s:{\mathcal {O}}_{X}\to F$ has cokernel of dimensional 0.
To a stable pair, we associate the Euler characteristic and the class of the support C of the sheaf F,
For fixed n and $\beta $ , there is a projective moduli space of stable pairs $P_{n}(X,\beta )$ . Unless $\beta $ is an effective curve class, the moduli space $P_{n}(X,\beta )$ is empty. An analysis of the deformation theory and the construction of the virtual cycle $[P_{n}(X,\beta )]^{vir}$ is given in [Reference Pandharipande and Thomas28]. We refer the reader to [Reference Pandharipande21, Reference Pandharipande and Thomas29] for an introduction to the theory of stable pairs.
Tautological descendent classes are defined via universal structures over the moduli space of stable pairs. Let
be the projection to the second factor, and let
be the universal stable pair on $X\times P_{n}(X,\beta )$ . LetFootnote 1
The following descendent classes are our main objects of study:
for $k\geq 0$ and $\gamma \in H^{*}(X)$ . The summand $-\mathcal {O}_{X\times P_{n}(X,\beta )}$ only affects $\mathsf {ch}_{0}$ ,
Since stable pairs are supported on curves, the vanishing
always holds.
We will study the following descendent series:
For fixed curve class $\beta \in H_{2}(X,\mathbb {Z})$ , the moduli space $P_{n}(X,\beta )$ is empty for all sufficiently negative n. Therefore, the descendent series (1.2) has only finitely many polar terms.
Conjecture 1 [Reference Pandharipande and Thomas28]
The stable pairs descendent series
is the Laurent expansion of a rational function of q for all $\gamma _{i}\in H^{*}(X)$ and all $k_{i}\geq 0$ .
For Calabi–Yau threefolds, Conjecture 1 reduces immediately to the rationality of the basic series $ \langle \, 1\, \rangle _{\beta }^{\mathrm {PT}}$ proven via wall-crossing in [Reference Bridgeland2, Reference Toda31]. In the presence of descendent insertions, Conjecture 1 has been proven for a rich class of varieties [Reference Pandharipande and Pixton23, Reference Pandharipande and Pixton24, Reference Pandharipande and Pixton25, Reference Pandharipande and Pixton26, Reference Pandharipande and Pixton27], including all nonsingular projective toric threefolds.
For our study of the Gromov–Witten/Pandharipande–Thomas ( $\mathrm {GW}/{\mathrm {PT}}$ ) descendent correspondence and the Virasoro constraints, modified stable pair descendent insertions will be more suitable for us. LetFootnote 2
where $c_{2}=c_{2}(T_{X})$ is the second Chern class of the tangent bundle, and let
be the corresponding descendent series.
1.2 Virasoro constraints for stable pairs
Let X be a nonsingular projective threefold with only $(p,p)$ -cohomology.Footnote 3 Let
The simplest example is $\mathbb {P}^{3}$ with
where $\mathsf {H}$ and $\mathsf {p}$ are the classes of the hyperplane and the point, respectively.
Let $\mathbb {D}^{X}_{{\mathrm {PT}}}$ be the commutative $\mathbb {Q}$ -algebra with generators
subject to the natural relations
for $\lambda \in \mathbb {Q}$ and $\gamma ,\widehat {\gamma } \in H^{*}(X)$ .
In order to define the Virasoro constraints for stable pairs, we require three constructions in the algebra $\mathbb {D}^{X}_{{\mathrm {PT}}}$ :
-
• Define the derivation $\mathrm {R}_{k}$ on $\mathbb {D}^{X}_{{\mathrm {PT}}}$ by fixing the action on the generators:
$$ \begin{align*}\mathrm{R}_{k}(\mathsf{ch}_{i}(\gamma))=\left(\prod_{n=0}^{k}(i+d-3+n)\right)\mathsf{ch}_{i+k}(\gamma)\, ,\quad \gamma\in H^{2d}(X,\mathbb{Q})\, \end{align*} $$for $k\geq -1$ . In case $k=-1$ , the product is empty and$$ \begin{align*}\mathrm{R}_{-1}(\mathsf{ch}_{i}(\gamma)) = \mathsf{ch}_{i-1}(\gamma).\end{align*} $$ -
• Define the element
$$ \begin{align*} \mathsf{ch}_{a}\mathsf{ch}_{b}(\gamma) = \sum_{i} \mathsf{ch}_{a}(\gamma^{L}_{i}) \mathsf{ch}_{b}(\gamma^{R}_{i}) \, \in\, \mathbb{D}^{X}_{{\mathrm{PT}}} \end{align*} $$where $\sum _{i} \gamma ^{L}_{i} \otimes \gamma ^{R}_{i}$ is the Künneth decomposition of the product,$$ \begin{align*}\gamma\cdot\Delta \in H^{*}(X\times X),\end{align*} $$with the diagonal $\Delta $ . The notation$$ \begin{align*}(-1)^{d^{L} d^{R}}(a+d^{L}-3)!(b+d^{R}-3)!\, \mathsf{ch}_{a}\mathsf{ch}_{b}(\gamma)\,\end{align*} $$will be used as shorthand for the sum$$ \begin{align*}\sum_{i} (-1)^{d(\gamma_{i}^{L}) d(\gamma_{i}^{R})}(a+d(\gamma_{i}^{L})-3)! (b+d(\gamma_{i}^{R})-3)!\, \mathsf{ch}_{a}(\gamma^{L}_{i}) \mathsf{ch}_{b}(\gamma^{R}_{i}), \end{align*} $$where $d(\gamma _{i}^{L})$ and $d(\gamma _{i}^{R})$ are the (complex) degrees of the classes. All factorials with negative arguments vanish. -
• Define the operator $\mathrm {T}_{k}: \mathbb {D}^{X}_{\mathrm {PT}}\rightarrow \mathbb {D}^{X}_{\mathrm {PT}}$ by
$$ \begin{align*}\mathrm{T}_{k}=-\frac{1}{2}\sum_{a+b=k+2}(-1)^{d^{L}d^{R}}(a+d^{L}-3)!(b+d^{R}-3)!\, \mathsf{ch}_{a}\mathsf{ch}_{b}(c_{1})+\frac{1}{24}\sum_{a+b=k}a!b!\, \mathsf{ch}_{a}\mathsf{ch}_{b}(c_{1}c_{2})\ \end{align*} $$for $k\geq -1$ . The sum here is over all ordered pairs $(a,b)$ satisfying $a+b=k+2$ with $a,b\geq 0$ (and all factorials with negative arguments vanish). Written in terms of renormalized descendents, the formula simplifies to(1.3) $$ \begin{align} \mathrm{T}_{k}=-\frac{1}{2}\sum_{a+b=k+2}(-1)^{d^{L}d^{R}}(a+d^{L}-3)!(b+d^{R}-3)!\, \widetilde{\mathsf{ch}}_{a}\widetilde{\mathsf{ch}}_{b}(c_{1})\,. \end{align} $$
Definition 2. Let $\mathcal {L}^{\mathrm {PT}}_{k}:\mathbb {D}^{X}_{\mathrm {PT}}\rightarrow \mathbb {D}^{X}_{\mathrm {PT}}$ for $k\geq -1$ be the operator
Since X is a nonsingular projective threefold with only $(p,p)$ -cohomology, Hirzebruch–Riemman–Roch implies
where $\mathsf {p} \in H^{6}(X)$ in the point class. Hence, for our paper, we can write
The operators for more general varieties X defined in [Reference Moreira17] specialize to equation (1.4) when all the cohomology is $(p,p)$ .
The operators $\mathcal {L}^{\mathrm {PT}}_{k}$ impose constraints on descendent integrals in the theory of stable pairs which are analogous to the Virasoro constraints of Gromov–Witten theory. We formulate the stable pairs Virasoro constraints as follows.
Conjecture 3 [Reference Oblomkov, Okounkov and Pandharipande18]
Let X be a nonsingular projective threefold with only $(p,p)$ -cohomology, and let $\beta \in H_{2}(X,\mathbb {Z})$ . For all $k\geq -1$ and $D\in \mathbb {D}^{X}_{{\mathrm {PT}}}$ , we have
Our main result is a statement about stationary descendents for nonsingular projective toric threefolds. The subalgebra $\mathbb {D}_{\mathrm {PT}}^{X+}\subset \mathbb {D}^{X}_{\mathrm {PT}}$ of stationary descendents is generatedFootnote 4 by
The operators $\mathcal {L}^{\mathrm {PT}}_{k}$ are easily seen to preserve $\mathbb {D}_{\mathrm {PT}}^{X+}$ . Therefore, the stationary Virasoro constraints are well-defined. We prove that the stationary Virasoro constraints hold in the toric case.
Theorem 1.1. Let X be a nonsingular projective toric threefold, and let $\beta \in H_{2}(X,\mathbb {Z})$ . For all $k\geq -1$ and $D\in \mathbb {D}_{\mathrm {PT}}^{X+}$ , we have
In the basic case of $\mathbb {P}^{3}$ , Theorem 1.1 specializes to the Virasoro constraints for stable pairs announced earlier in [Reference Pandharipande21] via equation (1.4). A table of data of stable pairs descendent series for $\mathbb {P}^{3}$ is presented in Section 10. The Virasoro constraints are seen to provide nontrivial relations.
1.3 The Virasoro bracket
For $k\geq -1$ , we introduce the operators
where the sum, as before, is over ordered pairs $(a,b)$ with $a,b\geq 0$ .
Our conventions with regard to the factorials in the above definition of $\mathrm {L}_k^{\mathrm {PT}}$ differ slightly from those of the definition of $\mathcal {L}_k^{\mathrm {PT}}$ . For $\mathrm {L}_k^{\mathrm {PT}}$ , all terms with negative factorial vanish except for the term $(-1)!\, \mathsf {ch}_1(c_1)$ . For example, we have
The new conventions will play a role in the exceptional cases in our analysis. We extend the action of $\mathrm {R}_k$ by
We view $(-1)!\mathsf {ch}_1(c_1)$ and
as formal symbols.
We define an equivalence relation $\stackrel {\langle ,\rangle }{=}$ for operators $\mathcal {A}, \mathcal {B}:\mathbb {D}^{X}_{\mathrm {PT}}\rightarrow \mathbb {D}^{X}_{\mathrm {PT}}$ by
Inside the bracket, $\mathsf {ch}_{0}(\mathsf {p})$ acts as $-1$ , and $\mathsf {ch}_{1}(\gamma )$ acts as 0 for all $\gamma \in H^{*}(X)$ . Moreover, the formal symbols $(-1)!\mathsf {ch}_{1}(c_{1})$ and $(-2)!\mathsf {ch}_{0}(c_{1})$ are defined to act as 0 inside the bracket.
Using the equivalence relation $\stackrel {\langle ,\rangle }{=}$ , we obtain the Virasoro bracket and the following bracket with $\mathsf {ch}_{k}(\mathsf {p})$ ,
The operators $\mathcal {L}^{\mathrm {PT}}_{k}$ are expressed in terms of $\mathrm {L}^{\mathrm {PT}}_{k}$ by
The occurrences of the negative factorial terms $(-1)!\mathsf {ch}_{1}(c_{1})$ cancel on the right side. The expressions $\mathrm {L}^{\mathrm {PT}}_{k}$ will play a role in the proof of Theorem 1.1.
The Virasoro algebra is the unique central extension of the Witt algebra. The Witt algebra is the algebra of polynomial vector fields on the circle and basis
The relations in the Virasoro algebra $\mathrm {Vir}$ are generated by
Footnote 5 where c is the central element. The elements $L_{n}$ , $n\ge -1$ generate a subalgebra $\mathrm {Vir}_{\ge -1}$ of $\mathrm {Vir}$ . Only the subalgebra $\mathrm {Vir}_{\ge -1}$ appears to be relevant in our geometric constructions. For further discussion of the full Virasoro algebra in the context of Gromov–Witten theory, the reader may consult [Reference Givental8].
1.4 Virasoro constraints for surfaces
Let S be a nonsingular projective toric surface. As a consequence of the stationary Virasoro constraints for
we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert schemes of points $\operatorname {\mathrm {Hilb}}^{n}(S)$ of surfaces S in Section 7. The case of all simply connected nonsingular projective surfaces is proven in [Reference Moreira17].
As we explain in Section 7, the descendent algebra $\mathbb {D}(S)$ for the surface S is generated by the tautological classes $\mathsf {ch}_{k}(\gamma )$ , $\gamma \in H^{*}(S)$ . The classes $\mathsf {ch}_{k}(\gamma )$ are definedFootnote 6 in terms of the universal ideal sheaf $\mathcal {I}$ on $S\times \operatorname {\mathrm {Hilb}}^{n}(S) $ . If X and $\beta $ satisfy equation (1.5), the tautological integrals over $[P_{n}(X,\beta )]^{vir}$ can be expressed in terms of integrals of the tautological classes over $\operatorname {\mathrm {Hilb}}^{n}(S)$ . The Virasoro operators $\mathrm {L}^{{\mathrm {PT}}}_{k}$ yield operators $\mathrm {L}^{S}_{k}$ (see Section 7) on $\mathbb {D}(S)$ , and we obtain the following result.
Theorem 1.2. Let S be a nonsingular projective toric surface. For all $k\geq -1$ and $D\in \mathbb {D}(S)$ , we have
for all $n\geq 0$ .
Taking Theorem 1.2 and [Reference Moreira17] as a starting point, D. van Bree [Reference van Bree32] formulated parallel Virasoro constraints for the descendent theory of moduli spaces of stable sheaves on surfaces in higher rank (and has provided many numerical checks).
1.5 Path of the proof
Our proof of Theorem 1.1 relies upon two central results. The first is the Virasoro conjecture in Gromov–Witten theory which has been proven for nonsingular projective toric varieties [Reference Givental8, Reference Iritani10]. We refer the reader to the extensive literature on the subject [Reference Eguchi, Hori and Xiong3, Reference Getzler and Pandharipande7, Reference Givental8, Reference Iritani10, Reference Okounkov and Pandharipande19, Reference Pandharipande20, Reference Teleman30]. The second is the stationary $\mathrm {GW}$ / ${\mathrm {PT}}$ correspondence of [Reference Pandharipande and Pixton23, Reference Pandharipande and Pixton24, Reference Pandharipande and Pixton25] which was cast in terms of vertex operators in [Reference Oblomkov, Okounkov and Pandharipande18] and has been proven for nonsingular projective toric threefolds. We show the stationary $\mathrm {GW}$ / ${\mathrm {PT}}$ correspondence intertwines the Virasoro constraints of the two theories. Along the way, we derive a more explicit form for the stationary $\mathrm {GW}$ / ${\mathrm {PT}}$ correspondence. Our proof of Theorem 1.1 yields the following stronger statement.
Theorem 1.3. Let X be a nonsingular projective threefold with only $(p,p)$ -cohomology for which the following two properties are satisfied:
-
(i) The stationary Virasoro constraints for the Gromov–Witten theory of X hold.
-
(ii) The stationary $\mathrm {GW}$ / ${\mathrm {PT}}$ correspondence holds.
Then, the stationary Virasoro constraints for the stable pairs theory of X hold.
A challenge for the subject is to prove the Virasoro constraints for stable pairs directly using the geometry of the moduli of sheaves. New ideas will almost certainly be required.
1.6 Gromov–Witten theory
Let X be a nonsingular projective threefold. Gromov–Witten theory is defined via integration over the moduli space of stable maps.
Let C be a possibly disconnected curve with at worst nodal singularities. The genus of C is defined by $1-\chi ({\mathcal {O}}_{C})$ . Let $\overline {M}^{\prime }_{g,m}(X,\beta )$ denote the moduli space of stable maps with possibly disconnected domain curves C of genus g with no collapsed connected components of genus greater or equal to $2$ . The latter conditionFootnote 7 requires each nonrational and nonelliptic connected component of C to represent a nonzero class in $H_{2}(X,{\mathbb Z})$ .
Let
denote the evaluation maps and the cotangent line bundles associated to the marked points. Let $\gamma _{1}, \ldots , \gamma _{m}\in H^{*}(X)$ , and let
The descendent insertions, denoted by $\tau _{k}(\gamma )$ for $k\geq 0$ , correspond to classes $\psi _{i}^{k} \text {ev}_{i}^{*}(\gamma )$ on the moduli space of stable maps. Let
denote the descendent Gromov–Witten invariants. The associated generating series is defined by
Since the domain components must map nontrivially, an elementary argument shows the genus g in the sum (1.6) is bounded from below. Foundational aspects of the theory are treated, for example, in [Reference Behrend and Fantechi1, Reference Fulton and Pandharipande5, Reference Li and Tian13].
Using the above definitions, the string equationFootnote 8 is easily checked:
The Gromov–Witten descendent insertions $\tau _{k}(\gamma )$ in equation (1.6) are defined for $k\geq 0$ . We include the nonstandard descendent insertions $\tau _{-2}(\gamma )$ and $\tau _{-1}(\gamma )$ by the rule:
We impose Heisenberg relations (8.1) on the operators $\tau _{k}(\gamma )$ :
In particular, the evaluation (1.8) applies only after commuting the negative descendents to the left.
Assume now that X has only $(p,p)$ -cohomology. Let $\mathbb {D}^{X}_{\mathrm {GW}}$ be the commutative $\mathbb {Q}$ -algebra with generators
subject to the natural relations
for $\lambda \in \mathbb {Q}$ and $\gamma ,\widehat {\gamma } \in H^{*}(X)$ . The subalgebra $\mathbb {D}_{\mathrm {GW}}^{X+}\subset \mathbb {D}^{X}_{\mathrm {GW}}$ of stationary descendents is generated by
We will use Getzler’s renormalization $\mathfrak {a}_{k}$ of the Gromov–Witten descendents:Footnote 9
where we use standard notation for the Pochhammer symbol
For example,Footnote 10
For $k\geq 2$ and $\gamma \in H^{>0}(X)$ , we have the general formula
1.7 The $\mathrm {GW}/{\mathrm {PT}}$ correspondence for essential descendents
The subalgebra
of essential descendents is generated by
While closed formulas for the full $\mathrm {GW}$ / ${\mathrm {PT}}$ descendent transformation of [Reference Pandharipande and Pixton26] are not known in full generality, the stationary theory is much better understood [Reference Oblomkov, Okounkov and Pandharipande18].Footnote 11 The transformation takes the simplest form when restricted to essential descendents.
The $\mathrm {GW}$ / ${\mathrm {PT}}$ transformation restricted to the essential descendents is a linear map
satisfying
and is defined on monomials by
The operations $\mathfrak {C}^{\circ }$ on $\mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ are
The above sums are over partitions $\mu $ of length $2$ or $3$ . The parts of $\mu $ are positive integers, and we always write
with weakly decreasing parts. In equations 1.14–1.16, we have $\ k_{i}\ge 0$ , and all occurrences of $\mathfrak {a}_{0}$ and $\mathfrak {a}_{-1}$ are set to $0$ . The automorphism factor $\mathrm {Aut}(\mu )$ is defined to equal the product $\prod _{i\ge 1}m_{i}(\mu )!$ , where $m_{i}(\mu )$ is the multiplicity of occurrence of i in $\mu $ .
The above formulas for the $\mathrm {GW}$ / ${\mathrm {PT}}$ descendent correspondence are proven here from the vertex operator formulas of [Reference Oblomkov, Okounkov and Pandharipande18] by a direct evaluation of the leading terms. In the toric case, we have the following explicit correspondence statement.Footnote 12
Theorem 1.4. Let X be a nonsingular projective toric threefold. Let
Let $\beta \in H_{2}(X,\mathbb {Z})$ with $d_{\beta } = \int _{\beta } c_{1}(X)$ . Then, the $\mathrm {GW}/{\mathrm {PT}}$ correspondence defined by formulas (1.14)–(1.16) holds:
after the change of variables $-q=e^{\imath u}$ .
As direct consequence of the formulas (1.14)–(1.16), the correspondence taken essential descendents on the stable pairs side to stationary descendents on the stable pairs side.
Proposition 4. Let $D\in \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ . Under the $\mathrm {GW}/{\mathrm {PT}}$ transformation, we have
Let S be a nonsingular projective toric surface. As a consequence of the stationary Virasoro constraints for
we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert schemes of points $\operatorname {\mathrm {Hilb}}^{n}(S)$ of surfaces S in Section 7. The case of all simply connected nonsingular projective surfaces is proven in [Reference Moreira17].
1.8 Plan of the paper
The key to our proof of Theorem 1.1 is an intertwining property of $\mathfrak {C}^{\bullet }$ with respect to Virasoro operators for stable pairs and the Virasoro operators for stable maps. Via the intertwining property, Theorem 1.1 is a consequence of the stationary $\mathrm {GW}/{\mathrm {PT}}$ correspondence of Theorem 1.4 and the Virasoro constraints for the Gromov–Witten theory of toric threefolds.
The algebra $\mathbb {D}^{X}_{\mathrm {PT}} $ carries a bumping filtration Footnote 13
where $\mathbb {D}^{k}_{\mathrm {PT}}$ is spanned by the monomialsFootnote 14
for which $\gamma _{s_{1}}\cdots \gamma _{s_{l}}=0$ for all subsets
In general the filtration (1.17) has infinite length. But if we restrict the filtration to $\mathbb {D}_{\mathrm {PT}}^{X\bigstar }$ , the filtration truncates since
The correspondence
respects the analogous bumping filtration $\mathbb {D}^{k}_{\mathrm {GW}}\cap \mathbb {D}_{\mathrm {GW}}^{X+}$ on $\mathbb {D}_{\mathrm {GW}}^{X+}$ with respect to the monomials
for which $\gamma _{s_{1}}\cdots \gamma _{s_{l}}=0$ for all subsets
Our proof of the intertwining is separated into a calculation for each of the four steps of the restriction of the bumping filtration on $\mathbb {D}^{X\bigstar }_{\mathrm {PT}}$ .
We discuss the Virasoro constraints for Gromov–Witten theory in Section 2 and for stable pairs in Section 3. The stationary Virasoro constraints of Theorem 1.1 are proven in Section 3.4 modulo the intertwining of Theorem 3.1. The proof of the intertwining property is given in four steps:
-
(0) We start in Section 4 with the special case where $D\in \mathbb {D}^{0}_{\mathrm {PT}}\cap \mathbb {D}_{\mathrm {PT}}^{X\bigstar } $ is the trivial monomial 1. The result is Proposition 9 of Section 4.3.
-
(1) For $D\in \mathbb {D}^{1}_{\mathrm {PT}}\cap \mathbb {D}_{\mathrm {PT}}^{X\bigstar }$ , the required results are proven in Section 5.3.
-
(2) Proposition 12 and Proposition 13 of Section 6 imply the intertwining property for $D\in \mathbb {D}_{\mathrm {PT}}^{2}\cap \mathbb {D}_{\mathrm {PT}}^{X\bigstar }$ .
-
(3) We treat $D\in \mathbb {D}_{\mathrm {PT}}^{3}\cap \mathbb {D}_{\mathrm {PT}}^{X\bigstar }=\mathbb {D}_{\mathrm {PT}}^{X\bigstar }$ in Proposition 14 of Section 6 to complete the proof of Theorem 3.1.
After a review of the $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence from the perspective of [Reference Oblomkov, Okounkov and Pandharipande18] in Section 8, we complete the proof of Theorem 1.4 in Section 9. A list of descendent series in degree 1 for $\mathbb {P}^{3}$ is given in Section 10.
2 Virasoro constraints for Gromov–Witten theory
2.1 Overview
We will discuss here the Virasoro constraints for stable maps. The constraints are equivalent to a procedure for removing the descendents of the canonical class. The procedures may be interpreted as series of the reactions (similar to the reactions discussed in the context of the $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence in [Reference Oblomkov, Okounkov and Pandharipande18, Section 3]). Our goal is to write the Virasoro constraints for Gromov–Witten theory in a form which is as close as possible to the Virasoro constraints of Conjecture 3 for stable pairs.
2.2 Gromov–Witten constraints: original form
The Virasoro constraints in Gromov–Witten theory were first proposedFootnote 15 in [Reference Eguchi, Hori and Xiong3]. We recall here the original form following [Reference Pandharipande20]. In Section 2.3, a reformulation which is more suitable for the $\mathrm {GW}/{\mathrm {PT}}$ correspondence will be presented.
In the discussion below, we fix a basis of $H^{*}(X)$ ,
for which $\gamma _{0}=1$ , $\gamma _{1}=c_{1}$ and $\gamma _{r}=[\operatorname {\mathrm {\mathsf {p}}}]$ . We assumeFootnote 16 $c_{1}\ne 0$ . We also fix a dual basis
Footnote 17 The standard method of describing of the Virasoro constraints uses the generating function for the Gromov–Witten invariants (see [Reference Pandharipande20, section 4]):
where $\big \langle , \big \rangle ^{X,\mathrm {Con}}_{g,\beta }$ is the standard integral over stable maps with connected domains (and stable contracted components of all genera are permitted).
The degree $\beta =0$ summand $F_{0}^{X}$ of $F^{X}$ does not require knowledge of curves in X. We further split the degree 0 summand into summands of genus $g\le 1$ and genus $g\ge 2$ :
The $g\leq 1$ summand takes the form
where the dots stand for terms divisible by $(t_{0}^{0})^{2}$ . The $g\geq 2$ summand $F^{X}_{0,g \ge 2}$ is determined by the string and dilaton equations from the constant maps contributions of [Reference Faber and Pandharipande4, Theorem 4].
Let $\widetilde {F}^{X}$ be the summand of $F^{X}$ with $\beta \neq 0$ . We define
The Gromov–Witten bracket $\big \langle , \big \rangle ^{X,\mathrm {GW}}_{g,\beta }$ introduced in Section 1.6 corresponds to the partition function
The full partition function
corresponds to the standard disconnected Gromov–Witten bracket $\big \langle , \big \rangle ^{X,\bullet }_{g,\beta }$ ,
The Virasoro operators $\mathrm {L}_{k}$ , $k\in \mathbb {Z}_{\ge -1}$ are differential operators which satisfy the Witt algebra relations,
The Virasoro conjecture [Reference Eguchi, Hori and Xiong3] states that the operators annihilate the partition function
For threefolds X, the operators are defined by
where the Einstein conventions for summing over repeated indices are followed,
and $[x]^{k}_{j}=e_{k+1-j}(x,x+1,\dots ,x+k)$ .Footnote 18 The tensors in the equation are defined in terms of the dual basis
2.3 Gromov–Witten constraints: correspondence form
We rewrite here the Virasoro constraints of Section 2 in the form most natural for the $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence. Since all of our results are for toric varieties, we specialize our discussion here to the case where X is a nonsingular projective threefold with only $(p,p)$ -cohomology.
We start by defining derivations $\mathrm {R}^{j}_{k}$ and quadratic differentials $\mathrm {B}^{k}$ on $\mathbb {D}_{\mathrm {GW}}^{X}$ by fixing the action on the generators:
-
• The action of the derivation $\mathrm {R}^{j}_{k}$ on $\tau _{i}(\gamma )$ for $k\geq -1$ , $0\leq j \leq 3$ and $\gamma \in H^{2d}(X)$ is
$$ \begin{align*}\mathrm{R}^{j}_{k}(\tau_{i}(\gamma))=[i+d-1]^{k}_{j}\, \tau_{k+i-j}(\gamma\cdot c_{1}^{j}),\end{align*} $$where $[x]^{k}_{j}=e_{k+1-j}(x,x+1,\dots ,x+k)$ and all terms $\tau _{\ell <-2}(\theta )$ are set to 0. As a special case,$$ \begin{align*}\mathrm{R}^{j}_{-1}(\tau_{i}(\gamma)) = \delta_{j}\, \tau_{i-1}(\gamma)\, .\\[-14pt]\end{align*} $$We will use the notation $\mathrm {R}_{k} = \sum _{j=0}^{3} \mathrm {R}_{k}^{j}\, .$ -
• The action of the quadratic differential $\mathrm {B}^{k}$ on $\tau _{0}(\gamma )\tau _{0}(\gamma ^{\prime })$ is
$$ \begin{align*}\mathrm{B}^{k}(\tau_{0}(\gamma)\tau_{0}(\gamma^{\prime}))=\int_{X}\gamma\gamma^{\prime} c_{1}^{k}\, .\\[-14pt]\end{align*} $$On all other quadratics terms, $\mathrm {B}^{k}$ acts by $0$ .
The differential operators $\mathrm {L}^{\mathrm {GW}}_{k}$ , for $k\geq -1$ , are then defined by the formula
where $\mathrm {T}_{k} = \sum _{j=0}^{3} \mathrm {T}_{k}^{j}$ and
where $d_{L}$ is the degree of the left term in the co-productFootnote 19 (as in Section 1.2). In formula (2.3), the symbol $::$ stands for the normal ordering convention: All negative descendents $\tau _{<0}(\gamma )$ are on the left of the positive descendents.
A calculation then yields the Virasoro bracket and the following bracket with $\tau _{k}(\mathsf {p})$ :
Theorem 2.1 [Reference Givental8, Reference Iritani10]
Let X be a nonsingular projective toric threefold, and let $\beta \in H_{2}(X,\mathbb {Z})$ . For all $k\geq -1$ and $D\in \mathbb {D}^{X}_{\mathrm {GW}}$ , we have
Theorem 2.1, which is exactly equivalent to constraints (2.2) for toric threefolds, was proven by Givental in two steps:
-
(i) Using the virtual localization formula of [Reference Graber and Pandharipande9], the Gromov–Witten theory of X is expressed in terms of graphs sums with descendent integrals over the moduli spaces of curves $\overline {M}_{g,n}$ at the vertices.
-
(ii) The Virasoro constraints, conjectured by Witten [Reference Witten33] for $\overline {M}_{g,n}$ and proven in [Reference Kontsevich12], are then used to establish the Virasoro constraints for X.
A second proof of Theorem 2.1, via the Givental–Teleman classificationFootnote 20 of semisimple CohFTs, was given in [Reference Teleman30]. For varieties with nonsemisimple Gromov–Witten theory, the Virasoro constraints are known in very few cases.Footnote 21
2.4 Gromov–Witten constraints: stationary form
We rewrite the Virasoro constraints in Gromov–Witten theory of Section 2.3 in a form which preserves the algebra of stationary descendents,
We fix a basis (2.1) of the cohomology of X which satisfies the following further conventions. Let
be a basis with $\gamma _{1}=c_{1}$ . Let
be a dual basis with respect to the Poincaré pairing. Let
span the rest of the cohomology.Footnote 22 The Künneth decomposition of the diagonal is
Consider the term $\mathrm {T}_{k}$ . The only place for descendents of $1$ to appear in the operator $\mathrm {L}^{\mathrm {GW}}_{k}$ is in $\mathrm {T}_{k}^{0}$ . As most of the terms of $\mathrm {T}^{0}_{k}$ vanish by definition, we find
We denote the rest of the term by $\mathrm {T}^{\prime }_{k}$ ,
Inside the bracket $\langle , \rangle ^{X,\bullet }_{\beta }$ , the insertion $\tau _{0}(1)$ can be removed by the string equation (1.7). We are therefore led to define the operator
where $\mathrm {R}_{k}=\sum _{j=0}^{3} \mathrm {R}_{k}^{j}$ and $\mathrm {R}_{-1}$ is the differentiation defined on the generators by
Inside the bracket $\langle , \rangle ^{X,\bullet }_{\beta }$ , we haveFootnote 23
where we have modified the Virasoro operators to exclude the descendents of $1$ :
Though the operators $\mathcal {L}_{k}^{\mathrm {GW}}$ no longer satisfy the Virasoro bracket, the operators $\mathcal {L}_{k}^{\mathrm {GW}}$ preserve the subalgebra $\mathbb {D}_{\mathrm {GW}}^{X+}\subset \mathbb {D}_{\mathrm {GW}}^{X}$ .
Proposition 5. Let X be a nonsingular projective toric threefold, and let $\beta \in H_{2}(X,\mathbb {Z})$ . For all $k\geq -1$ and $D\in \mathbb {D}^{X+}_{\mathrm {GW}\circ }$ , we have
Proof. The case $k=0$ follows because
and $\Big \langle \mathrm {T}_{0}^{0}\dots \Big \rangle ^{X,\bullet }_{\beta }=0$ . For the other case the argument is below.
Using equations (2.6) and (2.7), we have
The first bracket on the right side of equation (2.8) vanishes by Theorem 2.1. We can write the second bracket on the right as
using equation (2.5). The right side of the above equation, after applying the commutator (1.8), is
which vanishes after applying equation (1.9).
In our study of the $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence, we are interested in the Gromov–Witten bracket $\big \langle , \big \rangle ^{X,\mathrm {GW}}_{g,\beta }$ of Section 1.6 instead of the standard disconnected bracket $\big \langle , \big \rangle ^{X,\bullet }_{g,\beta }$ . Therefore, the following result is important for our study.
Proposition 6. Let X be a nonsingular projective toric threefold, and let $\beta \in H_{2}(X,\mathbb {Z})$ . For all $k\geq -1$ and $D\in \mathbb {D}^{X+}_{\mathrm {GW}\circ }$ , we have
Proof. Since $\mathcal {L}^{\mathrm {GW}}_{k}$ preserves $\mathbb {D}^{X+}_{\mathrm {GW}}$ , we have
Since the Gromov–Witten invariants corresponding to collapsed connected components of genus at least 2 always vanish in the presence of stationary descendents,
Since $\Big \langle \mathcal {L}^{\mathrm {GW}}_{k}(D) \Big \rangle _{\beta }^{X,\bullet }$ vanishes by Proposition 5 and
is invertible,Footnote 24 $\Big \langle \mathcal {L}^{\mathrm {GW}}_{k}(D) \Big \rangle _{\beta }^{X,\mathrm {GW}}$ also vanishes.
3 Theorem 1.1: Virasoro constraints for stable pairs
3.1 Intertwining property
We have already defined the operators $\mathrm {L}_{k}^{\mathrm {PT}}$ and $\mathcal {L}^{\mathrm {PT}}_{k}$ on $\mathbb {D}_{\mathrm {PT}}^{X}$ in Sections 1.2 and 1.3:
for $k\geq -1$ . We also have
Equations (3.1) are parallel to equations (2.4) in Gromov–Witten theory.
The main computation of the paper is the intertwining property which relates the Virasoro operators for the stable pairs and Gromov–Witten theories via the descendent correspondence. We separate the argument into two cases: $k\leq 0$ and $k \geq 1$ . Proposition 7 covers the $k\leq 0$ case. The $k\geq 1$ case treated in Theorem 3.1 is harder.
Proposition 7 is proven in Section 3.3 except for steps at the end of the proof which will be completed in the proof of Theorem 3.1 in Sections 4–6. The argument is an intricate calculation based on a strategy of filtration.
Proposition 7. For $k=-1,0$ and $D\in \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ , we have
after the restrictions $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})=1$ and $\tau _{-1}(\operatorname {\mathrm {\mathsf {p}}})=0$ .
Theorem 3.1. For all $k\ge 1$ and $D\in \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ , we have
after the restrictions $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})=1$ and $\tau _{-1}(\gamma )=0$ for $\gamma \in H^{>2}(X)$ .
The evaluations of the left sides of the equalities in Proposition 7 and Theorem 3.1 require a slight generalization of the formulas (1.14)–(1.16) which govern the descendent correspondence on $\mathbb {D}^{X\bigstar }_{\mathrm {PT}}$ . Additional rules are required for
The required rules take a very simple form since $\mathrm {L}_{k}^{\mathrm {PT}}(D)$ is at most linearFootnote 25 in the classes (3.2) over $\mathbb {D}^{X\bigstar }_{\mathrm {GW}}$ :
where $M\in \mathbb {D}^{X\bigstar }_{\mathrm {PT}}$ . For $\mathfrak {C}^{\circ }(\widetilde {\mathsf {ch}}_{2}({\delta })M)$ with $M\in \mathbb {D}^{X\bigstar }_{\mathrm {PT}}$ , formulas (1.14)–(1.16) apply unchanged. The above rules are compatible with the $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence and will be established in Section 9.
The restrictions $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})=1$ and $\tau _{-1}(\operatorname {\mathrm {\mathsf {p}}})=0$ in Proposition 7 are well-defined since both $\mathfrak {C}^{\bullet }\circ \mathrm {L}_{k}^{\mathrm {PT}}(D)$ and $\widetilde {\mathrm {L}}_{k}^{\mathrm {GW}}\circ \mathfrak {C}^{\bullet }(D)$ , $k=0,-1$ will be seen to lie in the commutative algebra generated by $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})$ , $\tau _{-1}(\gamma )$ and $\mathbb {D}_{\mathrm {GW}}^{X+}$ . The commutation with $\tau _{-2}(p)$ and $\tau _{-1}(\operatorname {\mathrm {\mathsf {p}}})$ follows from equation (1.9).
Similarly, the restrictions $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})=1$ and $\tau _{-1}(\gamma )=0$ for $\gamma \in H^{>2}(X)$ in Theorem 3.1 are well-defined since both $\mathfrak {C}^{\bullet }\circ \mathrm {L}_{k}^{\mathrm {PT}}(D)$ and $\widetilde {\mathrm {L}}_{k}^{\mathrm {GW}}\circ \mathfrak {C}^{\bullet }(D)$ , $k>0$ will be seen to lie in the commutative algebra generated by $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})$ , $\tau _{-1}(\gamma )$ and $\mathbb {D}_{\mathrm {GW}}^{X\bigstar }$ . The algebra $\mathbb {D}_{\mathrm {GW}}^{X\bigstar }$ is generated by the essential descendents
Again, commutation follows from equation (1.9).
3.2 Conventions for $(-1)!\mathsf {ch}_{1}(c_{1})$
In order to complete the definitions of the left sides of Proposition 7 and Theorem 3.1, we must also include the term $(-1)! \mathsf {ch}_{1}(c_{1})$ in the descendent correspondence $\mathfrak {C}^{\bullet }$ since such terms occur in $\mathrm {L}_{k}^{\mathrm {PT}}$ .
$\bullet $ The first case is
$\bullet $ The nonvanishing bumping term is given by
where $k_{1}\ge 2$ .
$\bullet $ The higher bumping term is
$k_{1},k_{2}\ge 0, k_{1}+k_{2}>1$ . There is also an exceptional higher bumping term
3.3 Proof of Proposition 7
The cases $k=-1,0$ are special in two ways:
-
(i) We must use the exceptional cases of the operator $\mathfrak {C}^{\circ }$ , in the analysis for $k=-1,0$ .
-
(ii) While the operator $\widetilde {\mathrm {L}}_{k}^{\mathrm {GW}}$ for $k=-1,0$ has quadratic part $\frac {u^{-2}}{2}B^{k+1}$ , $\widetilde {\mathrm {L}}_{k}^{\mathrm {GW}}$ is a first order operator acting on the stationary sector of descendent algebra for $k>0$ .
For these reasons, we treat the $k=-1,0$ cases separately here.
The restrictions in the statement of Proposition 7 allow us freely use
which is compatible with $\mathfrak {C}^{\bullet }$ . Similarly, we can use
Let us write down the corresponding operators explicitly:
We have used equation (3.5) for $\mathrm {L}_{-1}^{{\mathrm {PT}}}$ . For ${\mathrm {L}}_{0}^{{\mathrm {PT}}}$ , only the $d_{L}=d_{R}=2$ summand is nonzero by equation (3.6).
Step 1. We check the statement for $D=1$ .
The left side of the equality of Proposition 7 for $k=-1$ is
The right side of the equality,
matches. For $k=0$ , the left side for $D=1$ is
The right side,
matches.
Step 2. We check the statement for $D=\widetilde {\mathsf {ch}}_{k+2}(\gamma )$ with $k\geq 0$ .
We must expand both sides of the equality of Proposition 7 in terms of $\tau $ . The following formula will be used:
We split the analysis of the difference for
in stages according to the $\tau $ degree of terms. The second term of the difference is simpler since
and the latter is a easy modification of equation (3.7). The first term is more involved since there are two parts: the action of $\mathrm {R}_{-1}$ and the interaction with $(-1)!\mathsf {ch}_{1}(c_{1})$ .
$\bullet $ We first study the $\tau $ linear terms of $(\imath u)^{k-1}\mathfrak {C}^{\bullet }\circ \mathrm {L}_{-1}^{\mathrm {PT}}(D)$ :
We have used here bumping with $(-1)!\mathsf {ch}_{1}(c_{1})$ from equation (3.4) to obtain the expression in the second line and an inversionFootnote 26 of equation (1.13) to justify the second equality. After collecting together the coefficients in front of the $\tau $ ’s in the last expression, we obtain $R_{-1}(\mathfrak {C}^{\circ }(\widetilde {\mathsf {ch}}_{k}(\gamma )))$ , exactly as expected.
$\bullet $ We study next the $\tau $ -quadratic term of equation (3.8). Consider first the terms that have a co-product $(\gamma \cdot c_{1})^{L}_{i}\otimes (\gamma \cdot c_{1})^{R}_{i}$ as argument. Bumping with $(-1)!\mathsf {ch}_{1}(c_{1})$ does not produce such terms—only the terms of the second line of equation (3.7) contribute to the terms of equation (3.8). These terms cancel exactly.
$\bullet $ The $\tau $ -quadratic terms of difference (3.8) with argument $(\gamma \cdot c_{1}^{2})^{L}_{i}\otimes (\gamma \cdot c_{1}^{2})^{R}_{i}$ are slightly more involved. The second term of the difference has terms
where the term on the second line is a result of bumping with $(-1)!\mathsf {ch}_{1}(c_{1})$ . After simplifying the last expression, we obtain the corresponding $\tau $ -quadratic term of $R_{-1}(\mathfrak {C}^{\circ }(\widetilde {\mathsf {ch}}_{k+2}(\gamma )))$ as expected.
$\bullet $ The last step is to analyze the $\tau $ -cubic terms of the difference (3.8). Since bumping with $\mathsf {ch}_{1}(c_{1})$ is trivial, the terms match exactly.
Similarly, we must analyze the difference
Since both $\mathrm {R}_{0}$ on the stable pairs side and $\mathrm {R}_{0}^{0}$ on the Gromov–Witten side scale the descendents by the complex cohomological degree, the difference (3.9) is equalFootnote 27 to
If $D=\widetilde {\mathsf {ch}}_{k+2}(\gamma )$ , then $\mathrm {B}^{1}\circ \mathfrak {C}^{\bullet }(D)=0$ . We have already proved that the difference vanishes for $D=1$ . Since
the difference (3.10) is equal to
Comparing formulas (1.14) and (1.15), we conclude that the latter difference vanishes.
Indeed, let us expand both terms of equation (3.11). First,
On the other hand,
where we have used dots to stand for the terms that are of complex cohomological degree $3$ . Since
all the omitted terms are annihilated by $\mathrm {R}_{0}^{1}$ . The remaining terms of the difference (3.11) cancel.
Step 3. We check the statement for $D=\widetilde {\mathsf {ch}}_{k_{1}+2}(\gamma _{1})\widetilde {\mathsf {ch}}_{k_{2}+2}(\gamma _{2})$ with $k_{i}\geq 0$ .
We start with the difference (3.8):
Vanishing of the last expression follows from Proposition 12 and Proposition 13.
The difference (3.9) as above is equivalent to equation (3.10). Since we have already shown the vanishing for $D=1$ and $D=\widetilde {\mathsf {ch}}_{k+2}(\gamma )$ , we need only to check the vanishing of
The vanishing follows from Propositions 12 and 13.
Step 4. We check the statement for $D=\widetilde {\mathsf {ch}}_{k_{1}+2}(\gamma _{1})\widetilde {\mathsf {ch}}_{k_{2}+2}(\gamma _{2})\widetilde {\mathsf {ch}}_{k_{3}+2}(\gamma _{3})$ with $k_{i}\geq 0$ .
The result follows immediately from the triple bumping relation (6.8) which holds in complete generality. No special cases require extra attention.
3.4 Proof of Theorem 1.1
The vanishings
are simple to prove for all $D\in \mathbb {D}_{{\mathrm {PT}}}^{X}$ . For
the vanishing (3.14) is immediate from the definition of $\mathrm {R}_{-1}$ and equation (1.1). For
the vanishing (3.14) follows from the definition of $\mathrm {R}_{0}$ , the virtual dimension constraints and the divisor equation:
We now assume $k\geq 1$ . Using the intertwining property of Theorem 3.1, the stationary $\mathrm {GW}/{\mathrm {PT}}$ correspondence of Theorem 1.4 and the Virasoro constraints in Gromov–Witten theory, we can prove the stationary Virasoro constraints for stable pairs in the toric case.
Let $D\in \mathbb {D}_{{\mathrm {PT}}}^{X+}$ , so D is a monomial in the operators
The first step is to check by hand that the Virasoro constraints
of Theorem 1.1 are compatible all with insertions of the form
If any of the operators (3.16) appear in D, the Virasoro constraints (3.15) are true if the Virasoro constraints are true for the monomial obtained by dividing D by the occurring operators (3.16). We can therefore reduce to the case where D is a monomial in the operators
In other words, $D\in \mathbb {D}^{X\bigstar }_{\mathrm {PT}}$ .
The next step is to apply Theorem 1.4:
for all $k\geq 1$ . By the construction of the correspondence [Reference Pandharipande and Pixton26], the descendents of the point class do not interact with other descendents:
for every $D\in \mathbb {D}_{{\mathrm {PT}}}^{X\bigstar }$ .
By combining equations (3.17) and (3.18) and the intertwining statement of Theorem 3.1, we see
where the last equality is by Proposition 6 which may be applied since
by Proposition 4. We conclude
as required.
We could have also used the intertwining property of Proposition 7 to prove the stable pairs vanishings (3.14) for $D\in \mathbb {D}_{{\mathrm {PT}}}^{X+}$ , but some additional care must be taken since the insertions $\mathsf {ch}_{0}(\mathsf {p})$ and $\mathsf {ch}_{1}(\mathsf {p})$ which occur in the terms
for $k=-1$ and $0$ are not covered by Proposition 7. We leave the details to the reader.
4 Intertwining I: basic case
4.1 Overview
After an explicit study of various terms of the stationary Gromov–Witten Virasoro constraints in Section 4.2, we prove Theorem 3.1 in the basic case $D=1$ in Section 4.3.
4.2 Leading term
We analyze here the stationary Virasoro constraints on the Gromov–Witten side defined in Section 2.4.
The leading term $\mathrm {T}^{1}_{k}$ of $\mathrm {T}^{\prime }_{k}$ is of the form
where $a,b\ge 0$ in the sum. By the following result, the term $\mathrm {T}^{\prime }_{k}$ simplifies if we use the modified descendents $\mathfrak {a}_{i}$ .
Proposition 8. For all $k\geq -1$ ,
where the sum over all $a,b\ge 0$ and we use convention $\mathfrak {a}_{0}=0,\, \mathfrak {a}_{-1}/(-1)!=\tau _{-2}$ .
Proof. Using formula (1.13), we expand $\mathrm {T}^{\prime }_{k}$ in terms of $\mathfrak {a}_{i}$ to show that the quadratic and cubic in $c_{1}$ terms cancel. In the computation, we compare the expressions
with the coefficients in equation (1.13).
The transformation (1.13) simplifies if we use the following operators and shorthand notations for the sums
In the formulas below, all operators $\tilde {\mathfrak {a}}_{0}$ are set to be 0. We apply transformation to $\mathrm {T}_{k}^{1}$ to obtain
To write the transformation of $\mathrm {T}^{2}_{k}$ , we split the sum for $\mathrm {T}^{2}_{k}$ into two subsums, the first with $d_{L}=2$ and the second with $d_{L}=3$ :
Finally, the transformation of $\mathrm {T}^{3}_{k}$ to $\mathfrak {a}$ variables is
After summing the terms $\mathrm {T}_{k}^{j}$ for $j=1,2,3$ , we find that only the first term in equation (4.1) does not cancel.
4.3 Intertwining for $D=1$
For the most of computations in Section 4, we will require the simplest case of the stationary $\mathrm {GW}/{\mathrm {PT}}$ transformation $\mathfrak {C}^{\bullet }$ of Section 1.7,
Our first result is the simplest case of Theorem 3.1.
Proposition 9. For all $k\geq 1$ , we have
Proof. Since the operators $\mathrm {R}_{k}$ annihilate $1$ , we must prove
From Section 1.2, we have the following formula on the stable pairs side:
On the Gromov–Witten side, we have
by Proposition 8. Using equation (4.2), the quadratic term in the $\mathfrak {a}$ -insertions of $\mathfrak {C}^{\bullet }(\mathrm {T}_{k})$ exactly matches the full right side of equation (4.3). We will prove the other terms of $\mathfrak {C}^{\bullet }(\mathrm {T}_{k})$ all vanish.
The stable pairs term $\mathrm {T}_{k}$ is the sum of three subsums:
where last term usesFootnote 28
After applying $\mathfrak {C}^{\bullet }$ to equation (4.4) we obtain quadratic, cubic and quartic monomials in $\mathfrak {a}$ . We will show the cubic and quartic terms vanish.
We start with the analysis of the quartic term of $\mathfrak {C}^{\bullet }(\mathrm {T}_{k})$ . The first term (4.4) yields the quartic part:
The last term of equation (4.4) yields the following quartic part (with the sum over the same range of a and b as above):
where, in both formulas, we have used convention $|\mu |=\sum _{i}\mu _{i}$ .
These two quartic parts cancel each other. Indeed, let us analyze the factor in front of
in both expressions. For simplicity, let us assume $|\operatorname {\mathrm {Aut}}(\lambda )|=1$ . Then, the factor in the first quartic part is a sum with four terms:
The factor in the second formula is a sum with three terms:
where the sum is over all splittings
The factors (4.5) and (4.6) are sums of 12 monomials of $\lambda _{i}+1$ and are opposites of each other. The case when $|\operatorname {\mathrm {Aut}}(\lambda )|>1$ is analogous.
Finally, we analyze the cubic terms. Let us first analyze the cubic terms of the form $\mathfrak {a}_{i}(\operatorname {\mathrm {\mathsf {p}}})\mathfrak {a}_{j}(\operatorname {\mathrm {\mathsf {p}}})\mathfrak {a}_{l}(\operatorname {\mathrm {\mathsf {p}}})$ . Since
the cubic part of the first term of equation (4.4) with $b=0$ is:
A similar cubic part is produced by the second term of equation (4.4) with $a=0$ .
The other cubic parts of the first term of equation (4.4) are
A similar term is yielded by the second term of equation (4.4).
If $\operatorname {\mathrm {Aut}}(\mu )=1$ , then the factor in front of monomial
of equation (4.8) is the sum of three terms
and, hence, cancels with corresponding monomial from equation (4.7).
The cubic part of the last term of equation (4.4) is
over all $a,b\geq 0$ satisfying $a+b=k+2$ . The sum cancels with the last term of equation (4.8).
5 Intertwining II: noninteracting insertions
5.1 Overview
The main result of Section 5 is a proof of Theorem 3.1 for
where D is a product of $\widetilde {\mathsf {ch}}_{k_{i}}(\gamma _{i})$ satisfying
We treat the singleton $D= \widetilde {\mathsf {ch}}_{k}({\mathsf {p}})$ in Proposition 10. An intricate computation is required for Proposition 11 which settles the cases $D= \widetilde {\mathsf {ch}}_{k}(\gamma )$ , where
Finally, in Section 5.3, the general case (5.1) is formally deduced from the singletons.
5.2 Intertwining shift operators
We first relate the operators $\mathrm{R}_{\mathrm{k}}$ appearing in the Virasoro constraints on the stable pairs and Gromov–Witten sides. Recall,
so $\widetilde {\mathsf {ch}}_{k}(\operatorname {\mathrm {\mathsf {p}}})=\mathsf {ch}_{k}(\operatorname {\mathrm {\mathsf {p}}})$ .
Proposition 10. For all $k\geq 1$ and all $i\geq 2$ , we have
Proof. The left side of the equation is
where we have used the definition of $\mathrm {R}_{k}$ for stable pairs and equation (1.14) for the correspondence.
The right side of the equation is
where we have used equation (1.14) for the correspondence, equation (1.13) and the definition of $\mathrm {R}_{k}$ for Gromov–Witten theory. The two sides match.
Proposition 11. For all $k\geq 1$ , $\widetilde {\mathsf {ch}}_{i}(\gamma )\in \mathbb {D}^{\bigstar X}_{\mathrm {PT}}$ , $\gamma \in H^{\ge 2}(X)$ , we have
Proof. We start with the easiest case and proceed to the hardest case.
$\underline {\mathbf {Case}\ \gamma \in H^{6}(X).}$ The case $\gamma =\operatorname {\mathrm {\mathsf {p}}}$ follows immediately from the previous results:
The second equality follows from Proposition 10 and equation (3.18). The third equality uses equation (4.3).
$\underline {\mathbf {Case}\ \gamma \in H^{4}(X).}$ We compute the difference
Since $\gamma \cdot c_{2}=0$ , we have $\widetilde {\mathsf {ch}}_{k}(\gamma )=\mathsf {ch}_{k}(\gamma )$ by (5.2).
We start by expanding the first term of the difference:
To proceed, we invert the correspondence (1.13):
We then obtain
We write the second term of the difference as
After applying the inversion (5.4), we have
We expand the above expression fully to obtain
where we have used formula
in the expansion of $\mathrm {R}_{k}(\tau _{i-2}(\gamma ))$ .
To complete our computation of the difference (5.3), we observe several cancellations. The first term of equation (5.5) cancels with first term of equation (5.7). The second term of equation (5.5) almost cancels with the sum of the second and third terms of equation (5.7); the only term that does not cancel is
Finally, we rewrite the last term of equation (5.5) as
Then, we see that the last term of equation (5.6) cancels with the last term of equation (5.5) if $\mu _{1}\ge k+1$ and $\mu _{2}\ge k+1$ . Thus, the difference (5.3) equals
We now include the $\mathrm {T}_{k}$ and $\mathrm {T}_{k}^{\prime }$ terms in the difference. We have
Using equation (4.3), the $\mathrm {T}_{k}$ and $\mathrm {T}_{k}^{\prime }$ terms in equation (5.10) simplify to
To complete our proof, we require the bumping formula (1.15):
Since $\gamma \in H^{4}(X)$ , all the other terms of equation (1.15) vanish. We apply the bumping formula (5.11). In particular, the first term of equation (5.11),
cancels with the first term of equation (5.9). Similarly, the second term of equation (5.11) cancels with the second term of equation (5.9).
Let us observe that the term of last expression with $a=1$ by the exceptional bumping (3.4) turns into the terms of equation (5.9) with $\mu _{1}=k$ or $\mu _{2}=k$ . Similarly, the term with $b=0$ cancels out with the term (5.8).
Also, the assumption $\widetilde {\mathsf {ch}}_{i}(\gamma )\in \mathbb {D}^{X\bigstar }_{\mathrm {PT}}$ implies that $i\ge 2$ ; thus, no negative factorials appear in the above computations.
$\underline {\mathbf {Case}\ \gamma \in H^{2}(X).}$ If $\gamma \in H^{2}(X)$ , the $\mathrm {T}_{k}$ and $\mathrm {T}_{k}^{\prime }$ terms of the formula (5.10) acquires extra summands:
where we have usedFootnote 29 $c_{1}\cdot \gamma _{2s+1-\bullet }=\sum _{\star } \alpha _{\bullet \star }\gamma _{\star }$ . Nevertheless, the strategy used in the previous case can be pursued also for $\gamma \in H^{2}(X)$ . The computation, which is carried out below, is of course more complicated.
We will study the difference
with $\gamma \in H^{2}(X)$ . The expansion of the first term is
The second term of the difference (5.14) is more involved since we must transform the descendents $\mathfrak {a}$ to the standard descendents $\tau $ before applying the shift operator $\mathrm {R}_{k}$ :
Notice the upper limits in the first harmonic sum is $\mu _{1}$ ; the terms with $j=\mu _{1}$ correspond to the third term of equation (1.14).
We will study the right-hand side of equation (5.13) using equations (5.15) and (5.16) in three steps corresponding to the $\tau $ -degree.
$\bullet $ Consider first the $\tau $ -linear terms. The $\tau $ -linear terms of equation (5.15) are
The $\tau $ -linear terms of equation (5.16) are more complicated:
The $\tau _{i+k-2}(\gamma )$ terms of equations (5.17) and (5.18) match so cancel in the difference (5.14). The $\tau _{i+k-3}(\gamma \cdot c_{1})$ terms in equations (5.17) and (5.18) almost cancel: The difference is
For the $\tau _{i+k-4}(\gamma \cdot c_{1}^{2})$ terms, we split the prefactor in equation (5.18) as
and the last coefficient of equation (5.18) as
Then, we see the difference of the $\tau _{i+k-4}(\gamma \cdot c_{1}^{2})$ terms in equations (5.17) and (5.18) is
On the right-hand side of equation (5.13), the $\tau $ -linear terms (5.19) and (5.20) of the difference (5.14) are canceled with
using $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})=1$ . In fact, after applying equation (1.15), we find
where the dots stand for the $\tau $ -quadratic terms. The second equality follows from the formula (5.4).
$\bullet $ Consider next the $\tau $ -quadratic terms. We start with the quadratic terms of complex cohomological degree $2$ . The corresponding terms from equation (5.15) are
The computation of the corresponding terms in equation (5.16) are more involved since the action of the shift operator $\mathrm {R}_{k}$ depends on the complex cohomological degree of the descendent:
The linear combination of the first term of equation (5.22) with $\mu _{1}+k-1=a$ and second term with $\mu _{1}-1=a$ is equal to the corresponding term of eqiatopm (5.21) with $\mu _{1}-1=a$ . Hence, these cancel in the difference. Similar cancellations happen with rest of the terms. The resulting difference of equations (5.21) and (5.22) is
We will cancel equation (5.23) with the $\tau $ -quadratic terms of complex cohomological degree 2 in the sum
More precisely, the first and second terms of the last expression yield
and the last two terms yieldFootnote 30
The cancellation then follows from
We have cancelled all $\tau $ -quadratic terms of complex cohomological degree 2 in equation (5.13).
Let us also observe that the terms of equation (5.24) with $a=1$ and with $b=1$ cancel out by exceptional bumping with equation (3.4) with the term of equation (5.23) with $\mu _{1}=k$ or $\mu _{2}=k$ .
A longer computation is needed to deal with $\tau $ -quadratic terms of complex cohomological degree 3. Since all such terms have $\gamma \cdot c_{1}^{2}$ as an argument, we drop the cohomology insertion from the notation. The corresponding terms from equation (5.15) are:
The corresponding terms from equation (5.16) are:
The expression (5.26) is simplified by the following strategy. We number the six $\tau $ -quadratic terms by their order of occurrence in equation (5.26). The first term of equation (5.26) combines with the third term. The second term combines with the fifth term. We also split off the summands with $j=\mu _{1}+k$ and $j=\mu _{2}+k$ from the first and second terms, respectively, as well as the summand with $j=\mu _{1}$ from the third term. Then, equation (5.26) equals
where the sum is over $\mu _{1}\geq \mu _{2}$ , $|\mu |=i-3$ .
Let us fix an integer a satisfying $a>k-2$ . We observe that the sum of the first term from the first line of equation (5.27) with $\mu _{1}=a+2-k$ and the second term in the last line with $\mu _{2}=a+1-k$ will cancel with the first term of equation (5.25) with $\mu _{1}=a+1$ . Also, the sum of the second term from the first line with $\mu _{2}=a+2-k$ and the first term of the last line with $\mu _{1}=a+1-k$ will cancel with the first term of equation (5.25) with $\mu _{2}=a+1$ .
Similarly, the sum of the first term for the second line of equation (5.27) with $\mu _{1}=a+2-k$ and the first term from the third line of equation (5.27) with $\mu _{1}=a+2$ cancels with the second term of equation (5.25) with $\mu _{1}=a+1$ . Finally, the sum of the second term from the second line of equation (5.27) with $\mu _{1}=a+1$ and the last term from the last line of equation (5.27) with $\mu _{1}=a+1-k$ cancels with the last term of equation (5.25) with $\mu _{1}=a+1$ .
After all of these cancellations, we are left with
where $\sum $ is the sum of two subsums: The first is over $\mu _{1}+\mu _{2}=i+k-4$ , $\mu _{1}\le k$ , and the second is over $\mu _{1}+\mu _{2}=i+k-4$ , $\mu _{2}\le k$ .
In the difference (5.13), the expression (5.28) is canceled by the corresponding $\tau $ -quadratic terms of complex cohomological degree 3 of equation (5.24). More precisely, the first and second terms of equation (5.24) yield
after we apply equation (1.15) to these terms and drop $\tau $ -cubic terms and the terms of cohomological degree other than $3$ . In particular, the factors in first and second terms are produced by the $\mathfrak {a}$ -linear term of equation (1.15) proportional to $c_{1}$ .
The last two terms of equation (5.24) yieldFootnote 31
after we apply only the parts of equations (1.14) and (1.15) that are not $c_{1}$ -proportional, then we use the $\mathfrak {a}$ to $\tau $ the transition formula (5.4) and drop the $\tau $ cubic terms and the terms of homological degree other than $3$ .
Together these two sums combine and cancel the first term of equation (5.28). To cancel the last two terms of equation (5.28), we follow the same pattern. We first apply $c_{1}^{0}$ -part of equation (1.15) to the first and second terms of equation (5.24) and then apply $c_{1}$ -part of the $\mathfrak {a}$ to $\tau $ transition formula (5.4). Next, we apply the $c_{1}^{0}$ -parts of equations (1.14) and (1.15) and the $c_{1}^{1}$ -part of equation (5.4) to the last two terms of equation (5.24). After dropping the $\tau $ -cubic terms and the terms of complex cohomological degree other than $3$ , we exactly cancel the remaining terms of equation (5.28).
$\bullet $ Consider finally the $\tau $ -cubic terms. The cohomological arguments of these terms are $c_{1}^{2}\cdot \gamma $ , so as in the previous computation, we drop the cohomology insertion from the notation.
After expanding the corresponding terms of equation (5.15), we obtain
On the other hand, the corresponding terms from equation (5.16) are more complicated:
In equation (5.29), we have $i+k-2=\sum _{j=1}^{3} (\mu _{j}+1)$ . Therefore, the difference between the last two expressions is the sum of the monomials
Let us restrict our attention to the case when i is bigger than k; the other cases are analogous. After applying the reaction from the last line of equation (1.15), we obtain a formula for the expressions in the second line of equation (5.13):
The terms of equations (5.31) and (5.32) with $\max (\mu _{1}+1,\mu _{2}+1)\le i-2$ contribute the monomials
Note $a+b=k+2$ in equation (5.13). Since $\max (\mu _{1}+1,\mu _{2}+1)\le i-2$ and $|\mu |=a+i-2$ or $|\mu |=b+i-2$ , we imply that $\mu _{1}+1,\mu _{2}+1\ge k-1$ . Thus, the corresponding terms of equations (5.31) and (5.32) cancel with the monomials (5.30) such that there is only one j with $\mu _{j}\le k-2.$
The terms in equations (5.31) and (5.32) with $\max (\mu _{1}+1,\mu _{2}+1)> i-2$ yield terms
where $\mu ^{\prime }=\max (\mu _{1},\mu _{2})$ . Both of these terms are of the form
with $\mu _{1}+1>i-2$ and $|\mu |=i+k-4$ . Since we assumed that $i> k$ , we have $\mu _{1}+\mu _{2}<k-4$ in equation (5.34). The discussed terms therefore combine to yield the sum of monomials
where $\mu _{3}+1>i-2$ and $\mu _{1},\mu _{2}\le k-2$ .
The terms (5.35) combine with the terms from the expansion of the last two lines of equation (5.13). Indeed, since $\gamma _{\bullet }$ , $\gamma _{\star }$ in the last two lines of equation (5.13) are of complex cohomological degree $2$ , the $\tau $ -terms result from use of the $c_{1}^{1}$ -part of equation (1.14) and of the $c_{1}^{0}$ -part of equation (1.15). The expansion of these terms is a sum of monomials
where $|\mu |=b-3$ .
The combination of equation (5.36) with $a=\mu _{3}-i+4$ , $b=\mu _{1}+\mu _{2}+3$ and equation (5.35) matches equation (5.30), since, in equation (5.36), we have
We have cancelled all $\tau $ -cubic terms.
The assumption $\widetilde {\mathsf {ch}}_{i}(\gamma )\in \mathbb {D}_{\mathrm {PT}}^{X\bigstar }$ implies $i\ge 3$ . Therefore, in the above computations, we do not see negative factorials in denominators.
5.3 Proof of Theorem 3.1 for $\mathbb {D}^{1}_{\mathrm {PT}} \cap \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$
Theorem 3.1, for all $D\in \mathbb {D}^{1}_{\mathrm {PT}} \cap \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ , is an immediate consequence of Proposition 11 for singletons by the following simple argument. Let
where $\gamma _{i}\gamma _{j}=0\in H^{*}(X)$ for all $i\neq j$ .
By definition, for $k\geq 1$ ,
Since $\gamma _{i}\gamma _{j}=0$ for $i\neq j$ ,
By Proposition 11,
We conclude
On the other hand,
The proof is completed by applying equation (4.3).
6 Intertwining III: interacting insertions
6.1 Overview
We complete here the proof of Theorem 3.1. Since noninteracting insertions have already been treated in Section 5, we must address the interacting cases. In the desired equation,
the stable pairs descendent insertions of $D \in \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ can interact with each other via the $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence on both sides of equation (6.1). In addition, the stable pairs descendents can also interact with constant term of the Virasoro constraints on the left side. We must control all of these interactions.
6.2 Interactions among two insertions
We start with results which control the interactions of two descendent insertions.
Proposition 12. Let $\gamma ^{\prime }\in H^{2}(X)$ , $\gamma ^{\prime \prime }\in H^{4}(X)$ , and let $i\ge 3$ , $j\ge 2$ . Then, for $k\ge -1$ , we have
Proof. We first compute the left side of the equation. After applying the shifts, we obtain
We apply the correspondence to the both terms:
The right side of the equation is
which matches the left side.
Proposition 13. Let $\gamma ^{\prime },\gamma ^{\prime \prime }\in H^{2}(X)$ , and let $i,j\ge 3$ . Then, for $k\ge -1$ , we have
Proof. We follow the same strategy as in the proof of Proposition 11. We first compute
After applying the correspondence, we obtain
where $f(i,j;\mu _{1},\mu _{2})=\max (\max (i-2,j-2),\max (\mu _{1}+1,\mu _{2}+1))$ .
The second term of the difference is easier:
We now analyze the difference. The $\tau $ -linear terms of complex cohomological degree $2$ in $(\imath u )^{k}$ times equations (6.3) and (6.4) are matching sums of the monomials:
The $\tau $ -linear terms of cohomological degree $3$ almost match. To be precise, the corresponding terms in equation (6.3) are sums the monomials:
Respectively, the corresponding terms in equation (6.4) are sums of the same monomials plus an extra term
This extra term gets canceled by the term from the second line of equation (6.2) with $b=0$ because of equation (3.5).
Therefore, the difference of $(\imath u )^{k}$ times equations (6.3) and (6.4) consists only of the $\tau $ -quadratic terms of complex cohomological degree $3$ . We omit cohomological classes since all the cohomological arguments are $\gamma ^{\prime }\gamma ^{\prime \prime } \cdot c_{1}$ . The corresponding part of equation (6.3) is
where we assume that f vanishes whenever one of the argument is negative.
We must compare equation (6.5) with the expansion of the last four lines of equation (6.2). The first two of the last four lines of (6.2) expand to
The last two lines of the last four lines of equation (6.2) expand to
These last two expressions are the $\tau $ -cubic contribution to equation (6.2) which results from the bumping of $\widetilde {\mathsf {ch}}_{i}(\gamma ^{\prime })\widetilde {\mathsf {ch}}_{j}(\gamma ^{\prime \prime })$ with the constant term $\mathrm {T}_{k}$ . The corresponding coefficient in front of $\tau $ -cubic monomial is given by the formula (6.7) below.
To complete the proof, we must match the coefficients in front of the terms in sums above. That is, we need to compare two expressions below for all $\mu $ satisfying $|\mu |=i+j+k-6$ :
where $[a]_{\le b}$ and $[a]_{\ge b}$ are cut off functions which equal a if a satisfies inequalities $a\ge b$ and $a\le b$ , respectively (and are zero otherwise). The matching now is a long and routine check. We give some details.
We can always assume $\mu _{1}\ge \mu _{2}$ and $i\ge j$ . Let us further assume k is small and $\mu _{1}\ge i+k$ . If $\mu _{2}\ge k $ , then the function (6.6) equals
The assumed inequalities force all terms in equation (6.7) to vanish.
Next, we assume all but last inequality are true, that is $\mu _{2}<k$ . Then the expression (6.6) becomes
On the other hand, in equation (6.7), only the second expression does not vanish – the second expression matches equation (6.6). Rest of the case can be treated analogously.
6.3 Interactions among three insertions
The last interaction to consider is among three descendent insertions. Because of the stationary assumption, there is only one case to control.
Proposition 14. Let $\gamma ^{\prime },\gamma ^{\prime \prime },\gamma ^{\prime \prime \prime } \in H^{2}(X)$ , and let $i_{1},i_{2},i_{3}\ge 3$ , Then, for $k\ge -1$ , we have
For the proof, we will use the explicit correspondence formula (1.16) for the triple interaction
where $|i|=i_{1}+i_{2}+i_{3}$ .
Proof of Proposition 14
We first compute the left side of the equation. To start,
After applying the triple bumping and the transition from $\mathfrak {a}$ descendents to $\tau $ descendents, we obtain
On the other hand, the right side of the equation equals
which matches $(\imath u)^{k}$ times equation (6.9).
6.4 Proof of Theorem 3.1
Let $k\ge 1$ , and let $D\in \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ . To prove the equality
after the restrictions $\tau _{-2}(\operatorname {\mathrm {\mathsf {p}}})=1$ and $\tau _{-1}(\gamma )=0$ for $\gamma \in H^{>2}(X)$ , we will expand both sides. The noninteracting case was already proven in Section 5.3. Equality in the general case will use Propositions 9, 10, 11, 12, 13 and 14.
In the formulas below, we will use shorthand notation for the constant term of $\mathrm {L}_{k}^{{\mathrm {PT}}}$ :
where L and R denote the left and right sides in equation (1.3).
For $D=\prod _{i=1}^{\ell } D_{i} \in \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ , we have
The first sum is over partitions $P^{\prime }$ of $\{1,\dots ,\ell ,L,R\}$ and
The second sum is over partitions $P^{\prime \prime }$ of $\{1,\dots ,\ell \}$ and $P^{\prime \prime }=\{S_{1},\dots ,S_{\ell (P^{\prime \prime })}\}$ .
We must compare equation (6.10) with $(\imath u)^{-k}$ times
where both sums run over partitions $P^{\prime },P^{\prime \prime }$ of $\{1,\dots , \ell \}$ .
Since we only work with the stationary descendents, we can assume that the parts of partitions in the formulas have at most three elements. We will match the terms of equation (6.10) and $(\imath u)^{-k}$ times equation (6.11) depending on the size of $S_{t}$ .
$\bullet $ If $|S_{t}|=3$ , then the terms in equations (6.10) and (6.11) with $P^{\prime \prime }=\tilde {P}\sqcup S_{t}$ are matched by Proposition 14.
$\bullet $ If $|S_{t}|=2$ with $S_{t}=\{p,q\}$ , then we use Propositions 12 and 13 to match the terms of equation (6.10) with $P^{\prime \prime }=\tilde {P}\sqcup S_{t}$ and with $P^{\prime }$ equal to
with the terms of equation (6.11) with $P^{\prime \prime }=\tilde {P}\sqcup S_{t}$ .
$\bullet $ If $|S_{t}|=1$ with $S_{t}=\{p\}$ , then we use Proposition 10 and Proposition 11 to identify the terms of equation (6.10) with $P^{\prime \prime }=\tilde {P}\sqcup S_{t}$ and with $P^{\prime }$ equal to
with the terms of equation (6.11) with $P^{\prime \prime }=\tilde {P}\sqcup S_{t}$ .
$\bullet $ The terms of equation (6.10) with $P^{\prime }=\{L\}\sqcup \{R\} \sqcup \tilde {P}$ are equal to the terms of equation (6.11) with $P^{\prime }=\tilde {P}$ by Proposition 9.
The above four cases match all the terms in equations (6.10) and (6.11).
7 Virasoro constraints for Hilbert schemes of points of surfaces
Let S be a nonsingular projective toric surface, and let
As an immediate consequence of Theorem 1.1 applied to the toric variety X, we obtain the following Virasoro constraints:
where $\gamma _{i}\in H^{*}(X)$ , $\operatorname {\mathrm {\mathsf {p}}} \in H^{2}(\mathbb {P}^{1})$ is the point class, and $[\mathbb {P}^{1}]\in H_{2}(X)$ is the fiber class.
We can specialize the constraints (7.1) further to the case of the minimal possible Euler characteristic,
The above isomorphism of schemes is defined as follows. A point $\xi \in \text {Hilb}^{n}(S)$ corresponds to a 0-dimensional subscheme of S of length n. Then,
is a curve embedded in $S\times \mathbb {P}^{1}$ with Euler characteristic n and curve class $n[\mathbb {P}^{1}]$ . The isomorphism sends $\xi $ to the corresponding stable pair
Since the moduli space of stable pairs is nonsingular of expected dimension
the virtual class is the standard fundamental class here. The result is a new set of Virasoro constraints for tautological classes on $\text {Hilb}^{n}(S)$ .
To write the Virasoro constraints for $\text {Hilb}^{n}(S)$ explicitly, we first define the corresponding descendent insertions. Let
be the universal sequence associated to the universal subscheme
For $\gamma \in H^{*}(S)$ , let
where $\pi $ is the projection to $\text {Hilb}^{n}(S)$ . We follow as closely as possible the descendent notation for threefolds in Section 1.1.
Let $\mathbb {D}(S)$ be the commutative algebra with generators
following Section 1.2. We define derivations $\mathrm {R}_{k}$ by their actions on the generators:
For $k\geq -1$ , we define differential operators
where the sum is over ordered pairs $(a,b)$ with $a,b\geq 0$ .
Theorem 5. For all $k\geq -1$ and $D\in \mathbb {D}(S)$ , we have
for all $n\geq 0$ .
Proof. For clarity, we will use superscripts $\mathsf {ch}_{i}^{\mathrm {Hilb}}$ and $\mathsf {ch}_{i}^{\mathrm {PT}}$ here to indicate whether we are referring to descendents on the Hilbert scheme of S as defined above or to stable pairs descendents on $S\times \mathbb {P}^{1}$ as defined in Section 1.1.
The universal stable pair of $P_{n}(S\times \mathbb {P}^{1}, n[\mathbb {P}^{1}])$ is $\mathbb F= \mathcal {O}_{Z\times \mathbb {P}^{1}}$ . Hence,
where $\rho $ is the projection $\rho : S\times \mathbb {P}^{1}\to S$ . By the push-pull formula, for $\delta \in H^{\ast }(S\times \mathbb {P}^{1})$ , we have
So, $\mathsf {ch}_{i}^{{\mathrm {PT}}}(\gamma \times 1)=0$ , and $\mathsf {ch}_{i}^{{\mathrm {PT}}}(\gamma \times \operatorname {\mathrm {\mathsf {p}}})=\mathsf {ch}_{i}^{\operatorname {\mathrm {Hilb}}}(\gamma )$ .
Since we have the Virasoro constraints (7.1), we must only check that the composition
is precisely
The first inclusion in equation (7.3) is determined by sending generators $\mathsf {ch}_{i}^{\operatorname {\mathrm {Hilb}}}(\gamma )$ to $\mathsf {ch}_{i}^{{\mathrm {PT}}}(\gamma \times \operatorname {\mathrm {\mathsf {p}}})$ , and the last map of equation (7.3) sends $\mathsf {ch}_{i}^{{\mathrm {PT}}}(\delta )$ to $\mathsf {ch}_{i}^{\operatorname {\mathrm {Hilb}}}(\rho _{\ast } \delta )$ .
The analysis of the composition is straightforward. For the diagonal terms, we note that
and
We write the Künneth decomposition of the diagonal as
Then, the Künneth decomposition of $\Delta \cdot c_{1}\in H^{\ast }(X\times X)$ is
where the remaining terms in the dots are killed by $\rho _{\ast }$ . The matching of operators then follows from the definition of $\mathcal L_{k}^{\mathrm {PT}}$ .
8 $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence: review
8.1 Vertex operators
Our goal here is to review the results of [Reference Oblomkov, Okounkov and Pandharipande18] and to explain how Theorem 1.4 can be derived from [Reference Oblomkov, Okounkov and Pandharipande18]. The full derivation is postponed to Section 9.
To state the main result of [Reference Oblomkov, Okounkov and Pandharipande18], we require negative descendents $\left \{ \mathfrak {a}_{k}\right \}$ for $k\in \mathbb {Z}_{<0}$ which are defined to satisfy the Heisenberg relations with positive descendents
The descendents $\left \{ \mathfrak {a}_{k}\right \} $ for ${k\in \mathbb {Z}\setminus \{0\}}$ generate the $H^{*}(X)$ -algebra $\mathsf {Heis}_{X}$ .
For curve class $\beta \in H_{2}(X)$ , there is a geometrically defined Gromov–Witten evaluation $\langle \cdot \rangle _{\beta }$ map on the algebra generated by the nonnegative descendents. We can extend the evaluation map to the whole algebra $\mathsf {Heis}_{X}$ by defining
We assemble the operators $\mathfrak {a}_{k}$ in the following generating function:
The main objects of study in [Reference Oblomkov, Okounkov and Pandharipande18] are the vertex operators
where y, w and x satisfy the constraints
Here, $\mathrm {Res}_{w=\infty }$ denotes $\frac {1}{2\pi \imath }$ times the integral along a small loop around $ w=\infty. $
Normally ordered monomials
form a linear basis of $\mathsf {Heis}$ . Respectively, we use $:\cdot :$ for the normal ordering operation
Extended $H^{*}(X)$ -linearly to the whole algebra $\mathrm {Heis}_{X}$ .
Let us notice that the equation (8.4) as well as the vertex operator (8.3) have symmetry
This symmetry implies that the only even powers of $\theta $ appear in the expansion of equation (8.3) (see Lemma 15 from [Reference Oblomkov, Okounkov and Pandharipande18] for more discussions and further properties of the vertex operator).
The operators $\mathrm {H}^{\mathsf {GW}}_{k}$ are mutually commutative. To obtain explicit formulas for $\mathrm {H}^{\mathsf {GW}}_{k}$ , we use the Lambert function to solve equation (8.4) and express y in terms of $x,w$ . The integral in the definition of $\mathrm {H}^{\mathsf {GW}}_{k}$ can be interpreted as an extraction of the coefficient of $w^{-1}$ . The descendent classes
are then obtained using the Sweedler coproduct. We also use the Sweedler coproduct conventions in
In the Sweedler conventions [Reference Kassel11], we abbreviate notation for the intersection with the small diagonal $\Delta _{n}\subset X^{n}$ with the pull-back of a class $\gamma \in H^{*}(X)$ :
Thus, the formula (8.5) expands as
8.2 Stable pairs
The stable pairs analogues of the operators $\mathrm {H}^{\mathsf {GW}}_{\vec {k}}(\gamma )$ are products of $\mathrm {H}^{{\mathrm {PT}}}_{k}(\gamma )$ defined as follows.
The classes $\mathrm {H}^{{\mathrm {PT}}}_{k}(\gamma )$ are linear combinations of descendents on the moduli spaces of stable pairs. Let
where the classes $\mathrm {H}^{{\mathrm {PT}}}_{k}\in \bigoplus _{n\in \mathbb {Z}} H^{*}(X\times P_{n}(X,\beta ))$ are defined by
where
In particular, we have
8.3 Equivariant correspondence
All the definitions and construction introduced in Section 8.1 have canonical lifts to the equivariant setting with respect to a group action on the variety X. We review here the equivariant $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence [Reference Pandharipande and Pixton26].
The most natural setting is the capped vertex formalism of [Reference Maulik, Oblomkov, Okounkov and Pandharipande16, Reference Pandharipande and Pixton26] which we review briefly here. Let the three-dimensional torus
act on $\mathbf {P}^{1}\times \mathbf {P}^{1}\times \mathbf {P}^{1}$ diagonally. The tangent weights of the $\mathsf {T}$ -action at the point
are $s_{1},s_{2},s_{3}$ . The $\mathsf {T}$ -equivariant cohomology ring of a point is
We have the following factorization of the restriction of class $c_{1}c_{2}-c_{3}$ of X to $\mathsf {p}$ :
where $c_{i}=c_{i}(T_{X})$ .
Let $U\subset \mathbf {P}^{1}\times \mathbf {P}^{1}\times \mathbf {P}^{1}$ be the $\mathsf {T}$ -equivariant threefold obtained by removing the three $\mathsf {T}$ -equivariant lines $L_{1},L_{2},L_{3}$ passing through the point $\infty \times \infty \times \infty $ . Let $D_{i}\subset U$ be the divisor with $i^{th}$ coordinate $\infty $ . For a triple of partitions $\mu _{1},\mu _{2},\mu _{3}$ , let
denote the generating series of the $\mathsf {T}$ -equivariant relative Gromov–Witten and stable pairs invariants of the pair
with relative conditions $\mu _{i}$ along the divisor $D_{i}$ .
The stable maps spaces are always taken with no contracted connected components of genus great than or equal to 2. The series (8.6) are the capped descendent vertices following the conventions of [Reference Oblomkov, Okounkov and Pandharipande18].
Theorem 8.1 [Reference Oblomkov, Okounkov and Pandharipande18]
After the change of variables $-q=e^{iu}$ the following correspondence between the two-leg capped descendent vertices holds:
$\mod (s_{1}+s_{3})(s_{2}+s_{3})$ .
The result of Theorem 8.1 has two defects. Since the third partition is empty, the result only covers the two-leg case. Moreover, the equality of the correspondence is not proven exactly, but only mod $(s_{1}+s_{3})(s_{2}+s_{3})$ . For the one-leg vertex with partitions $(\mu _{1}, \emptyset ,\emptyset )$ , Theorem 8.1 can be restricted in two ways to obtain the equality of the correspondence
8.4 Nonequivariant limit
By following the arguments of [Reference Pandharipande and Pixton26], a nonequivariant $\mathrm {GW}/{\mathrm {PT}}$ descendent correspondence for stationary insertions is derived in [Reference Oblomkov, Okounkov and Pandharipande18]. For our statements, we will follow as closely as possible the notation of [Reference Oblomkov, Okounkov and Pandharipande18, Reference Pandharipande and Pixton26].
Let $\mathsf {Heis}^{c}$ be the Heisenberg algebra with generators $\mathfrak {a}_{k\in \mathbb {Z}\setminus \{0\}}$ , coefficients $\mathbb {C}[c_{1},c_{2}]$ and relations
Let $\mathsf {Heis}^{c}_{+}\subset \mathsf {Heis}^{c}$ be the subalgebra generated by the elements $\mathfrak {a}_{k>0}$ , and define the $\mathbb {C}[c_{1},c_{2}]$ -linear map
by $\widehat {\mathfrak {a}}_{k}= \mathfrak {a}_{k}$ for $k>0$ and
When restricted to the subalgebra $\mathsf {Heis}^{c}_{+}$ , the $\mathbb {C}[c_{1},c_{2}]$ -linear map (8.7) is an isomorphism.
For a nonsingular projective threefold X and classes $\gamma _{1}, \ldots ,\gamma _{l}\in H^{*}(X)$ , the hat operation make no difference inside the Gromov–Witten bracket,
because the treatment of the negative descendents on the left side is compatible with the treatment of the negative descendents by the hat operation.
Let $\vec {k}=(k_{1},\ldots ,k_{l})$ be a vector of nonnegative integers. Following [Reference Pandharipande and Pixton26], we define the following element of $\mathsf {Heis}^{c}_{+}$ :
where $\mathrm {H}^{\mathsf {GW}}_{\vec {k}_{S}}=\prod _{i\in S} \mathrm {H}^{\mathsf {GW}}_{k_{i}}$ and the element $\mathrm {H}_{k}^{\mathrm {GW}}\in \mathsf {Heis}^{c}$ is a linear combination of monomials of $\mathfrak {a}_{i}$ ; the expression is given by equation (8.3).
For classes $\gamma _{1},\ldots ,\gamma _{l}\in H^{*}(X)$ and a vector $\vec {k}=(k_{1},\ldots ,k_{l})$ of nonnegative integers, we define
where $\gamma _{S}=\prod _{i\in S}\gamma _{i}$ .
Theorem 8.2 [Reference Oblomkov, Okounkov and Pandharipande18]
Let X be a nonsingular projective toric threefold, and let $\gamma _{i}\in H^{\geq 2}(X,\mathbb {C})$ . After the change of variables $-q=e^{iu}$ , we have
where $d=\int _{\beta } c_{1}$ .
8.5 Examples for $X=\mathbb {P}^{3}$
The prefactor $\mathcal {S}^{-1}\left (\frac {x}{\theta }\right )$ in front of $\sum _{k=0}^{\infty } x^{k}\mathsf {ch}_{k}(\mathbb {F}-\mathcal {O}) $ in the formula for $\mathrm {H}^{{\mathrm {PT}}}(x)$ has an expansion which the following initial terms:
Therefore, the nonequivariant limit of $\mathrm {H}_{k}^{{\mathrm {PT}}}(\gamma )$ is
On the Gromov–Witten side of the correspondence, we have
The operators $\mathfrak {a}_{k}$ are expressed in terms of standard descendentsFootnote 32
The descendent correspondence of Theorem 8.2 implies relations for stable pairs and Gromov–Witten invariants of $\mathbf {P}^{3}$ . For example, for $\beta $ of degree 1,
Here, $\mathsf {p}$ is the class of point, $\mathsf {L}$ is the class of line and $\mathsf {H}$ is the class of hyperplane.Footnote 33
8.6 Residues
To complete our proof of Theorem 1.4, we will compute the residues (8.3). More precisely, we will prove the following result.
Proposition 15. For $k_{i}\in \mathbb {Z}_{\geq 0}$ and $\gamma _{i}\in H^{\ge 2}(X)$ such that $\widetilde {\mathsf {ch}}_{k_{i}+2}(\gamma _{i})\in \mathbb {D}^{X\bigstar }_{{\mathrm {PT}}}$ , we have
9 Residue computation
9.1 Preliminary computations
Before starting the proof of the Proposition 15, we compute the expansion of the terms of the residue formula (8.3).
Consider first the constraint equation (8.4). Solutions of the equation are formal power series in the variable
We can solve the constraint equation iteratively in powers of r. Indeed, modulo $r^{1}$ , the constraint equation implies $w=y$ , and we start the expansion by
To find the next term of r in the expansion of $w(x,y)$ , we substitute
into equation (8.4) and expand the result of the substitution in powers of r. The coefficient of $r^{1}$ in the expansion gives a linear equation which determines $f_{1}$ . After iterating the above procedure three times, we obtain
To see the expansion of the residue (8.3) has positive powers of $t=c_{1}$ , we use a change of variables:
The residue with respect to w on the right side of equation (8.3) is converted to a residue with respect to y via equation (9.1). Using equation (9.2), we will compute the residue with respect to v.
In the new variables, we have
After we normal order the elements of the Heisenberg algebra in the expression for the vertex operator $\mathrm {H}^{\mathrm {GW}}(x)$ , the negative Heisenberg operators end up next to the vacuum $\langle \, |$ inside the bracket $\langle \cdot \rangle ^{\mathrm {GW}}$ . Relation (8.8), which governs interaction with $\langle \,|$ , yields the following factor in the expression under the residue:
The inverse of $y-w$ in equation (8.3) becomes the factor
The elements of the Heisenberg algebra that participate in the residue formula are packed into the vertex operator
Thus, we need to compute the difference of powers in the expression for the vertex operators. Using formula for $w(y)$ (9.1), we obtain:
The above calculations yield the leading terms of all algebraic expressions occurring in formula (8.3) for the vertex operator $\mathrm {H}^{\mathrm {GW}}(x)$ . As we will see in Section 9.2, the knowledge of these leading terms almost immediately leads to the simplest case of the descendent correspondence (1.14). For the other two cases, equations (1.15) and (1.16), we must analyze the interaction of two and three vertex operators $\mathrm {H}^{\mathrm {GW}}(x)$ . We apply standard vertex operator techniques to complete the proof of Proposition 15 in Section 9.2.
9.2 Proof of Proposition 15
9.2.1 Case $\widetilde {\mathrm {H}}_{k_{1}+1}(\gamma _{1})$
We start with the proof of the formula for the self-reaction. We must analyze the r expansion of the residue
More precisely, we must compute the coefficients of
By the argument of [Reference Oblomkov, Okounkov and Pandharipande18, Section 3.2], the coefficient of $rt^{j}$ vanishes. From the computations of the v expansions (9.1), (9.3), (9.4) and (9.5), the terms in front of $r^{i}$ , $i>0$ are proportional to t. The expression under the residue sign becomes
After applying the residue operation to the last expression, we obtain the terms of formula (1.14) in the coefficients of the x-expansion.
9.2.2 Case $\widetilde {\mathrm {H}}_{k_{1}+1,k_{2}+1}(\gamma _{1}\cdot \gamma _{2})$
We show next that the double interaction term yields formula (1.15). The new computation that is needed for understanding the interaction term is $\widehat {\mathrm {H}}_{k_{1},k_{2}}$ . It is convenient to assemble the expressions into a generating series $\widehat {\mathrm {H}}(x_{1},x_{2})$ .
To compute $\widehat {\mathrm {H}}(x_{1},x_{2})$ , we must move all negative Heisenberg operators in the product of the vertex operators $\mathrm {H}^{\mathrm {GW}}(x_{1})\mathrm {H}^{\mathrm {GW}}(x_{2})$ to the left, next to the vacuum $\langle \, |$ . We use the standard vertex operator commutation relation to perform this reshuffling:
where $w_{i}=w(x_{i},y_{i})$ . Using the computations of Section 9.1, we derive the following expansion:
The negative Heisenberg operators interact with the vacuum $\langle \, |$ . We obtain
where $\mathrm {V}_{+}^{(i)}=\mathrm {V}_{+}(x_{i},y_{i})$ , $\mathrm {D}^{(i)}=\mathrm {D}(x_{i},y_{i})$ , $\mathrm {E}^{(i)}=\mathrm {E}(x_{i},y_{i})$ .
From equation (9.6), we see
where the second equality holds because $V_{+}^{(i)}$ commute. We conclude, after the change of variables, the generating function $\widetilde {\mathrm {H}}(x_{1},x_{2})$ for $\widetilde {\mathrm {H}}_{k_{1},k_{2}}$ is given by
where $\operatorname {\mathrm {Res}}=\operatorname {\mathrm {Res}}_{v_{1}=\infty }\operatorname {\mathrm {Res}}_{v_{2}=\infty }$ and $\widetilde {\mathrm {B}}^{(12)}=\mathrm {B}^{(12)}-1$ . By expanding the scalar factor
in the operator inside the residue operation, we obtain
The residue of the coefficient in front of $t^{-1}$ in equation (9.8) vanishes. The coefficient in front of $t^{0}$ is
After applying the $\operatorname {\mathrm {Res}}$ operation, we obtain
The coefficient in front of $x_{1}^{k_{1}+2}x_{2}^{k_{2}+2}$ in the last expression matches with the $\mathfrak {a}$ -linear terms of the right side of equation (1.15) that are proportional to $c_{1}^{0}$ .
Finally, we compute the coefficient in front of $t^{1}$ in equation (9.8):
The residue of the terms from the first line of the last expression form the generating function of the $\mathfrak {a}$ -quadratic terms of the right-hand side of equation (1.15). The residue of the terms from the second line of the last expression form the generating function of the $c_{1}$ -proportional $\mathfrak {a}$ -linear terms of the right side of equation (1.15).
9.2.3 Case $\widetilde {\mathrm {H}}_{k_{1}+1,k_{2}+1,k_{3}+1}(\gamma _{1}\cdot \gamma _{2}\cdot \gamma _{3})$
Finally, we must analyze the triple interaction. The computation here is parallel to computations in Sections 9.2.1 and 9.2.2. The new ingredient for the triple bumping reaction is the residue formula
for the generating function of the operators $\widehat {\mathrm {H}}_{k_{1},k_{2},k_{3}}$ . Here and below, $\operatorname {\mathrm {Res}}$ stands for the triple residue
The generating function $\widetilde {\mathrm {H}}(x_{1},x_{2},x_{3})$ for the operators $\widetilde {\mathrm {H}}_{k_{1},k_{2},k_{3}}$ is given by
We expand the above as
Since $ \widetilde {\mathrm {B}}^{(12)}\widetilde {\mathrm {B}}^{(23)}\widetilde {\mathrm {B}}^{(13)}$ is proportional to $r^{6}$ , we can write the last expression as
up to $O(r^{2})$ .
After expanding the expression inside $\operatorname {\mathrm {Res}}$ , including the prefactor $\frac {1}{r^{4}t^{5}}$ , we obtain
where
The application of $\operatorname {\mathrm {Res}}$ to the coefficient in front of $t^{-1}$ in the last expression yields 0. On the other hand, the coefficient in front of $t^{0}$ equals
The result of application of $\operatorname {\mathrm {Res}}$ is therefore equal to the generating function of the right side of equation (1.16).
10 Degree 1 series for $\mathbb {P}^{3}$
10.1 Stationary descendent series
We provide a complete table of the stationary stable pair descendent series for projective $\mathbb {P}^{3}$ in degree $1$ . Our notation is given by three vectors $V_{\operatorname {\mathrm {\mathsf {p}}}}, V_{\mathsf {L}}, V_{\mathsf {H}}$ of nonnegative integers which specify the stationary descendents with cohomology insertions
corresponding to the point, line and hyperplane classes respectively. For example, the data $[1,2],[4,9],[6]$ correspond to the descendent
In the table below, the full descendent series is given as rational function in q.
The symmetry in the above series is a consequence of the functional equation; see [Reference Pandharipande21, Section 1.7]. In the stationary case, the stable pairs series are equal to the corresponding descendent series for the Donaldson–Thomas theory of ideal sheaves; see [Reference Oblomkov, Okounkov and Pandharipande18, Theorem 22].
10.2 Descendents of 1
We tabulate here descendent series of $\mathbb {P}^{3}$ in degree $1$ with descendents of the identity $1\in H^{*}(\mathbb {P}^{3})$ together with stationary descendents specified as before by a triple of vectors.
$\bullet $ With $\mathsf {ch}_{4}(1)$ and the rest stationary:
$\bullet $ With $\mathsf {ch}_{5}(1)$ and the rest stationary:
$\bullet $ With $\mathsf {ch}_{4}(1)\mathsf {ch}_{4}(1)$ and the rest stationary:
$\bullet $ With $\mathsf {ch}_{6}(1)$ and the rest of stationary:
$\bullet $ With $\mathsf {ch}_{4}(1)\mathsf {ch}_{4}(1)\mathsf {ch}_{4}(1)$ and the rest stationary:
$\bullet $ With $\mathsf {ch}_{5}(1)\mathsf {ch}_{4}(1)$ and the rest stationary:
$\bullet $ Without stationary descendents:
10.3 Examples of the Virasoro relations
10.3.1 $\mathcal {L}_{2}^{{\mathrm {PT}}}$
Examples of the Virasoro relations for $\mathcal {L}_{1}^{{\mathrm {PT}}}$ were given in [Reference Pandharipande21, Section 3]. We consider here the operator $\mathcal {L}_{2}^{{\mathrm {PT}}}$ for $X=\mathbb {P}^{3}$ .
The Chern classes of the tangent bundle of $\mathbb {P}^{3}$ are
The constant term for $k=2$ is
where we used the evaluation $\mathsf {ch}_{0}(\gamma )=-\int _{X}\gamma $ and dropped all the terms with $\mathsf {ch}_{1}$ . The Virasoro operator for $k=2$ is then
Since our examples will be for curves of degree 1 in $\mathbb {P}^{3}$ and since
we can simplify the operator even further:
10.3.2 Stationary example
Let us check the Virasoro constraints of Theorem 1.1 for $k=2$ and
The constant term part of the relation has three summands:
The rest of the relation can be divided into two parts. The first part is $\mathrm {R}_{2}(D)$ which has two terms:
The second part is
Using the cancellation of poles
we easily verify the Virasoro relation
10.3.3 Nonstationary example
Let us check the Virasoro relation $\mathcal {L}_{2,\beta =\mathsf {L}}^{\mathrm {PT}}$ for
a nonstationary case (not covered by Theorem 1.1, but implied by Conjecture 3).
The constant term part of the relation has three summands:
The rest of the relation can be divided into two parts:
After a remarkable cancellation of poles,
we verify the Virasoro relation
Acknowledgments
We are grateful to D. Maulik, N. Nekrasov, G. Oberdieck, D. Oprea, A. Pixton, J. Shen, R. Thomas and Q. Yin for many conversations about descendents and descendent correspondences.
Conflicts of Interest
None.
Funding statement
A. Ob. was partially supported by NSF CAREER grant DMS-1352398 and Simons Foundation. A. Ob. also would like to thank the Forschungsinstitut für Mathematik and the Institute for Theoretical Studies at ETH Zürich for hospitality during the visits in November 2018, June 2019 and January 2020. The paper is based upon work supported by the National Science Foundation under Grant No. 1440140 while the second and third authors were in residence at the Mathematical Sciences Research Institute in Berkeley during the Spring semester of 2018. A. Ok. was partially supported by the Simons Foundation as a Simons Investigator. A. Ok. gratefully acknowledges funding by the Russian Academic Excellence Project ‘5-100’ and RSF grant 19-11-00275. R. P. was partially supported by SNF-200020-182181, SwissMAP and the Einstein Stiftung. The project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 786580).
Data availability statement
None.
Ethical standards
The research meets all ethical guidelines, including adherence to the legal requirements of the study country.