Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T12:04:58.657Z Has data issue: false hasContentIssue false

SPECIAL CURVES AND POSTCRITICALLY FINITE POLYNOMIALS

Published online by Cambridge University Press:  19 September 2013

MATTHEW BAKER
Affiliation:
Georgia Institute of Technology, Mathematics Atlanta, GA, United [email protected]
LAURA DE MARCO
Affiliation:
University of Illinois at Chicago, Mathematics Chicago, IL, United [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the postcritically finite maps within the moduli space of complex polynomial dynamical systems. We characterize rational curves in the moduli space containing an infinite number of postcritically finite maps, in terms of critical orbit relations, in two settings: (1) rational curves that are polynomially parameterized; and (2) cubic polynomials defined by a given fixed point multiplier. We offer a conjecture on the general form of algebraic subvarieties in the moduli space of rational maps on ${ \mathbb{P} }^{1} $ containing a Zariski-dense subset of postcritically finite maps.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Copyright
© The Author(s) 2013.

References

[Ah]Ahlfors, L. V., Complex Analysis, 3rd edn. (McGraw-Hill Book Co., New York, 1978). An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics.Google Scholar
[An]André, Y., ‘Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire’, J. Reine Angew. Math. 505 (1998), 203208.Google Scholar
[BD]Baker, M. and DeMarco, L., ‘Preperiodic points and unlikely intersections’, Duke Math. J. 159 (2011), 129.CrossRefGoogle Scholar
[BR]Baker, M. and Rumely, R., Potential Theory and Dynamics on the Berkovich Projective Line, Mathematical Surveys and Monographs, 159 (American Mathematical Society, Providence, RI, 2010).Google Scholar
[Be1]Beardon, A. F., ‘Symmetries of Julia sets’, Bull. Lond. Math. Soc. 22 (1990), 576582.Google Scholar
[Be2]Benedetto, R. L., ‘Heights and preperiodic points of polynomials over function fields’, Int. Math. Res. Not. IMRN 62 (2005), 38553866.CrossRefGoogle Scholar
[BH1]Branner, B. and Hubbard, J. H., ‘The iteration of cubic polynomials. I. The global topology of parameter space’, Acta Math. 160 (1988), 143206.Google Scholar
[BE]Buff, X. and Epstein, A., ‘Bifurcation measure and postcritically finite rational maps’, in Complex Dynamics (A K Peters, Wellesley, MA, 2009), 491512.Google Scholar
[CL]Chambert-Loir, A., ‘Mesures et équidistribution sur les espaces de Berkovich’, J. Reine Angew. Math. 595 (2006), 215235.Google Scholar
[De1]DeMarco, L., ‘Dynamics of rational maps: a current on the bifurcation locus’, Math. Res. Lett. 8 (2001), 5766.Google Scholar
[De2]DeMarco, L., ‘Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity’, Math. Ann. 326 (2003), 4373.Google Scholar
[DM]DeMarco, L. and McMullen, C., ‘Trees and the dynamics of polynomials’, Ann. Sci. Éc. Norm. Super 41 (2008), 337383.Google Scholar
[DH]Douady, A. and Hubbard, J. H., ‘A proof of Thurston’s topological characterization of rational functions’, Acta Math. 171(2) (1993), 263297.Google Scholar
[DF]Dujardin, R. and Favre, C., ‘Distribution of rational maps with a preperiodic critical point’, Amer. J. Math. 130 (2008), 9791032.Google Scholar
[Du]Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 259 (Springer, New York, 1983).Google Scholar
[FRL]Favre, C. and Rivera-Letelier, J., ‘Équidistribution quantitative des points de petite hauteur sur la droite projective’, Math. Ann. 335 (2006), 311361.Google Scholar
[GHT1]Ghioca, D., Hsia, L.-C. and Tucker, T., ‘Preperiodic points for families of polynomials’, Algebra and Number Theory, to appear.Google Scholar
[GHT2]Ghioca, D., Hsia, L.-C. and Tucker, T., ‘Preperiodic points for families of rational maps’ (2012), submitted for publication.Google Scholar
[GTZ]Ghioca, D., Tucker, T. and Zhang, S., ‘Towards a dynamical Manin–Mumford conjecture’, Int. Math. Res. Not. IMRN 22 (2011), 51095122.Google Scholar
[Hi]Hindry, M., ‘Autour d’une conjecture de Serge Lang’, Invent. Math. 94 (1988), 575603.Google Scholar
[La]Laurent, M., ‘Équations diophantiennes exponentielles’, Invent. Math. 78 (1984), 299327.Google Scholar
[MSS]Mañé, R., Sad, P. and Sullivan, D., ‘On the dynamics of rational maps’, Ann. Sci. Éc. Norm. Super 16 (1983), 193217.Google Scholar
[Mc1]McMullen, C. T., ‘Families of rational maps and iterative root-finding algorithms’, Ann. of Math. (2) 125 (1987), 467493.Google Scholar
[Mc2]McMullen, C. T., ‘The Mandelbrot set is universal’, in The Mandelbrot Set, Theme and Variations, London Mathematical Society Lecture Note Series, 274 (Cambridge Univ. Press, Cambridge, 2000), 117.Google Scholar
[MS]Medvedev, A. and Scanlon, T., ‘Invariant varieties for polynomial dynamical systems’, Ann. of Math. (2), to appear.Google Scholar
[Mi1]Milnor, J., ‘Remarks on iterated cubic maps’, Exp. Math. 1 (1992), 524.Google Scholar
[Mi2]Milnor, J., Dynamics in One Complex Variable, 3rd edn. Annals of Mathematics Studies, 160 (Princeton University Press, Princeton, NJ, 2006).Google Scholar
[Pi]Pila, J., ‘O-minimality and the André–Oort conjecture for ${ \mathbb{C} }^{n} $’, Ann. of Math. (2) 173 (2011), 17791840.Google Scholar
[Ra1]Raynaud, M., ‘Courbes sur une variété abélienne et points de torsion’, Invent. Math. 71 (1983), 207233.Google Scholar
[Ra2]Raynaud, M., ‘Sous-variétés d’une variété abélienne et points de torsion’, in Arithmetic and Geometry, Vol. I, Progress in Mathematics, 35 (Birkhäuser Boston, Boston, MA, 1983), 327352.Google Scholar
[Ri1]Ritt, J. F., ‘Prime and composite polynomials’, Trans. Amer. Math. Soc. 23 (1922), 5166.Google Scholar
[Ri2]Ritt, J. F., ‘Permutable rational functions’, Trans. Amer. Math. Soc. 25 (1923), 399448.Google Scholar
[Si]Silverman, J. H., Moduli Spaces and Arithmetic Dynamics, CRM Monograph Series, 30 (American Mathematical Society, Providence, RI, 2012).Google Scholar