Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T03:35:52.688Z Has data issue: false hasContentIssue false

CLE PERCOLATIONS

Published online by Cambridge University Press:  03 October 2017

JASON MILLER
Affiliation:
Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK; [email protected]
SCOTT SHEFFIELD
Affiliation:
Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; [email protected]
WENDELIN WERNER
Affiliation:
Department of Mathematics, ETH Zürich, Rämistr. 101, 8092 Zürich, Switzerland; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Conformal loop ensembles (CLEs) are random collections of loops in a simply connected domain, whose laws are characterized by a natural conformal invariance property. The set of points not surrounded by any loop is a canonical random connected fractal set — a random and conformally invariant analog of the Sierpinski carpet or gasket.

In the present paper, we derive a direct relationship between the CLEs with simple loops ($\text{CLE}_{\unicode[STIX]{x1D705}}$ for $\unicode[STIX]{x1D705}\in (8/3,4)$, whose loops are Schramm’s $\text{SLE}_{\unicode[STIX]{x1D705}}$-type curves) and the corresponding CLEs with nonsimple loops ($\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ with $\unicode[STIX]{x1D705}^{\prime }:=16/\unicode[STIX]{x1D705}\in (4,6)$, whose loops are $\text{SLE}_{\unicode[STIX]{x1D705}^{\prime }}$-type curves). This correspondence is the continuum analog of the Edwards–Sokal coupling between the $q$-state Potts model and the associated FK random cluster model, and its generalization to noninteger $q$.

Like its discrete analog, our continuum correspondence has two directions. First, we show that for each $\unicode[STIX]{x1D705}\in (8/3,4)$, one can construct a variant of $\text{CLE}_{\unicode[STIX]{x1D705}}$ as follows: start with an instance of $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$, then use a biased coin to independently color each $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ loop in one of two colors, and then consider the outer boundaries of the clusters of loops of a given color. Second, we show how to interpret $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ loops as interfaces of a continuum analog of critical Bernoulli percolation within $\text{CLE}_{\unicode[STIX]{x1D705}}$ carpets — this is the first construction of continuum percolation on a fractal planar domain. It extends and generalizes the continuum percolation on open domains defined by $\text{SLE}_{6}$ and $\text{CLE}_{6}$.

These constructions allow us to prove several conjectures made by the second author and provide new and perhaps surprising interpretations of the relationship between CLEs and the Gaussian free field. Along the way, we obtain new results about generalized $\text{SLE}_{\unicode[STIX]{x1D705}}(\unicode[STIX]{x1D70C})$ curves for $\unicode[STIX]{x1D70C}<-2$, such as their decomposition into collections of $\text{SLE}_{\unicode[STIX]{x1D705}}$-type ‘loops’ hanging off of $\text{SLE}_{\unicode[STIX]{x1D705}^{\prime }}$-type ‘trunks’, and vice versa (exchanging $\unicode[STIX]{x1D705}$ and $\unicode[STIX]{x1D705}^{\prime }$). We also define a continuous family of natural $\text{CLE}$ variants called boundary conformal loop ensembles (BCLEs) that share some (but not all) of the conformal symmetries that characterize $\text{CLE}$s, and that should be scaling limits of critical models with special boundary conditions. We extend the $\text{CLE}_{\unicode[STIX]{x1D705}}$/$\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ correspondence to a $\text{BCLE}_{\unicode[STIX]{x1D705}}$/$\text{BCLE}_{\unicode[STIX]{x1D705}^{\prime }}$ correspondence that makes sense for the wider range $\unicode[STIX]{x1D705}\in (2,4]$ and $\unicode[STIX]{x1D705}^{\prime }\in [4,8)$.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2017

References

Aru, J., Sepúlveda, A. and Werner, W., ‘On bounded-type thin local sets of the two-dimensional Gaussian free field’, J. Inst. Math. Jussieu (2017), 1–28. doi:10.1017/S1474748017000160.CrossRefGoogle Scholar
Beffara, V., ‘The dimension of the SLE curves’, Ann. Probab. 36(4) (2008), 14211452.CrossRefGoogle Scholar
Camia, F., Garban, C. and Newman, C. M., ‘Planar Ising magnetization field I. Uniqueness of the critical scaling limit’, Ann. Probab. 43(2) (2015), 528571.CrossRefGoogle Scholar
Camia, F. and Newman, C. M., ‘Two-dimensional critical percolation: the full scaling limit’, Comm. Math. Phys. 268(1) (2006), 138.CrossRefGoogle Scholar
Cardy, J., ‘Conformal field theory and statistical mechanics’, inExact Methods in Low-dimensional Statistical Physics and Quantum Computing (Oxford University Press, Oxford, 2010), 6598.Google Scholar
Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A. and Smirnov, S., ‘Convergence of Ising interfaces to Schramm’s SLE curves’, C. R. Math. Acad. Sci. Paris 352(2) (2014), 157161.CrossRefGoogle Scholar
Chelkak, D., Hongler, C. and Izyurov, K., ‘Conformal invariance of spin correlations in the planar Ising model’, Ann. of Math. (2) 181(3) (2015), 10871138.CrossRefGoogle Scholar
Chelkak, D. and Smirnov, S., ‘Universality in the 2D Ising model and conformal invariance of fermionic observables’, Invent. Math. 189(3) (2012), 515580.CrossRefGoogle Scholar
Dubédat, J., ‘Commutation relations for Schramm–Loewner evolutions’, Comm. Pure Appl. Math. 60(12) (2007), 17921847.CrossRefGoogle Scholar
Dubédat, J., ‘Duality of Schramm-Loewner evolutions’, Ann. Sci. Éc. Norm. Supér. (4) 42(5) (2009), 697724.CrossRefGoogle Scholar
Dubédat, J., ‘SLE and the free field: partition functions and couplings’, J. Amer. Math. Soc. 22(4) (2009), 9951054.CrossRefGoogle Scholar
Duminil-Copin, H., Tassion, V. and Wu, H., 2017, in preparation.Google Scholar
Duplantier, B., Miller, J. and Sheffield, S., ‘Liouville quantum gravity as a mating of trees’. ArXiv e-prints, 2014.Google Scholar
Edwards, R. G. and Sokal, A. D., ‘Generalization of the Fortuin–Kasteleyn–Swendsen–Wang representation and Monte Carlo algorithm’, Phys. Rev. D (3) 38(6) (1988), 20092012.CrossRefGoogle ScholarPubMed
Fortuin, C. M. and Kasteleyn, P. W., ‘On the random-cluster model. I. Introduction and relation to other models’, Physica 57 (1972), 536564.CrossRefGoogle Scholar
Grimmett, G., The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften, 333 [Fundamental Principles of Mathematical Sciences] (Springer, Berlin, 2006).CrossRefGoogle Scholar
Gwynne, E., Mao, C. and Sun, X., ‘Scaling limits for the critical Fortuin–Kasteleyn model on a random planar map I: cone times’. ArXiv e-print, 2015.Google Scholar
Gwynne, E. and Miller, J., ‘Convergence of the topology of critical Fortuin–Kasteleyn planar maps to that of CLE $_{\unicode[STIX]{x1D705}}$ on a Liouville quantum surface’, 2017, in preparation.Google Scholar
Gwynne, E. and Sun, X., ‘Scaling limits for the critical Fortuin–Kastelyn model on a random planar map II: local estimates and empty reduced word exponent’. ArXiv e-print, 2015.Google Scholar
Gwynne, E. and Sun, X., ‘Scaling limits for the critical Fortuin–Kastelyn model on a random planar map III: finite volume case’. ArXiv e-prints, 2015.Google Scholar
Häggström, O., ‘Positive correlations in the fuzzy Potts model’, Ann. Appl. Probab. 9(4) (1999), 11491159.CrossRefGoogle Scholar
Higuchi, Y. and Wu, X.-Y., ‘Uniqueness of the critical probability for percolation in the two-dimensional Sierpiński carpet lattice’, Kobe J. Math. 25(1–2) (2008), 124.Google Scholar
Hongler, C. and Kytölä, K., ‘Ising interfaces and free boundary conditions’, J. Amer. Math. Soc. 26(4) (2013), 11071189.CrossRefGoogle Scholar
Hongler, C. and Smirnov, S., ‘The energy density in the planar Ising model’, Acta Math. 211(2) (2013), 191225.CrossRefGoogle Scholar
Izyurov, K., ‘Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities’, Comm. Math. Phys. 337(1) (2015), 225252.CrossRefGoogle Scholar
Kemppainen, A. and Smirnov, S., ‘Conformal invariance of boundary touching loops of FK Ising model’. ArXiv e-prints, 2015.Google Scholar
Kemppainen, A. and S., Smirnov, ‘Random curves, scaling limits and Loewner evolutions’, Ann. Probab. 45(2) (2017), 698779.CrossRefGoogle Scholar
Kumagai, T., ‘Percolation on pre-Sierpinski carpets’, inNew Trends in Stochastic Analysis (Charingworth, 1994) (World Sci. Publ., River Edge, NJ, 1997), 288304.Google Scholar
Lawler, G., Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, 114 (American Mathematical Society, Providence, RI, 2005).Google Scholar
Lawler, G., Schramm, O. and Werner, W., ‘Conformal restriction: the chordal case’, J. Amer. Math. Soc. 16(4) (2003), 917955. (electronic).CrossRefGoogle Scholar
Lawler, G., Schramm, O. and Werner, W., ‘Conformal invariance of planar loop-erased random walks and uniform spanning trees’, Ann. Probab. 32(1B) (2004), 939995.CrossRefGoogle Scholar
Maes, C. and Vande Velde, K., ‘The fuzzy Potts model’, J. Phys. A 28(15) (1995), 42614270.CrossRefGoogle Scholar
Miller, J. and Sheffield, S., ‘CLE(4) and the Gaussian free field’, 2017, in preparation.Google Scholar
Miller, J. and Sheffield, S., ‘Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees’, Probab. Theory Related Fields (2017), doi:10.1007/s00440-017-0780-2.CrossRefGoogle Scholar
Miller, J. and Sheffield, S., ‘Liouville quantum gravity spheres as matings of finite-diameter trees’. ArXiv e-prints, 2015.Google Scholar
Miller, J. and Sheffield, S., ‘Gaussian free field light cones and SLE $_{\unicode[STIX]{x1D705}}(\unicode[STIX]{x1D70C})$ ’. ArXiv e-prints, 2016.Google Scholar
Miller, J. and Sheffield, S., ‘Imaginary geometry I: interacting SLEs’, Probab. Theory Related Fields 164(3–4) (2016), 553705.CrossRefGoogle Scholar
Miller, J. and Sheffield, S., ‘Imaginary geometry II: reversibility of SLE𝜅(𝜌1; 𝜌2) for 𝜅 ∈ (0, 4)’, Ann. Probab. 44(3) (2016), 16471722.Google Scholar
Miller, J. and Sheffield, S., ‘Imaginary geometry III: reversibility of SLE𝜅 for 𝜅 ∈ (4, 8)’, Ann. of Math. (2) 184(2) (2016), 455486.CrossRefGoogle Scholar
Miller, J., Sheffield, S. and Werner, W., ‘Non-simple SLE curves are not determined by their range’. ArXiv e-prints, 2016.Google Scholar
Miller, J., Sheffield, S. and Werner, W., ‘Conformal loop ensembles on Liouville quantum gravity’, 2017, in preparation.Google Scholar
Miller, J., Sheffield, S. and Werner, W., ‘Labeled CLE interfaces and the Gaussian free field fan’, 2017, in preparation.Google Scholar
Miller, J., Sun, N. and Wilson, D. B., ‘The Hausdorff dimension of the CLE gasket’, Ann. Probab. 42(4) (2014), 16441665.CrossRefGoogle Scholar
Miller, J. and Werner, W., ‘Connection probabilities for conformal loop ensembles’. ArXiv e-prints, 2017.Google Scholar
Nacu, Ş. and Werner, W., ‘Random soups, carpets and fractal dimensions’, J. Lond. Math. Soc. (2) 83(3) (2011), 789809.CrossRefGoogle Scholar
Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, third edition, Grundlehren der Mathematischen Wissenschaften, 293 [Fundamental Principles of Mathematical Sciences] (Springer, Berlin, 1999).CrossRefGoogle Scholar
Rohde, S. and Schramm, O., ‘Basic properties of SLE’, Ann. of Math. (2) 161(2) (2005), 883924.CrossRefGoogle Scholar
Rozanov, Y. A., Markov Random Fields, Applications of Mathematics (Springer, New York–Berlin, 1982), Translated from the Russian by Constance M. Elson.CrossRefGoogle Scholar
Schramm, O., ‘Scaling limits of loop-erased random walks and uniform spanning trees’, Israel J. Math. 118 (2000), 221288.CrossRefGoogle Scholar
Schramm, O. and Sheffield, S., ‘Contour lines of the two-dimensional discrete Gaussian free field’, Acta Math. 202(1) (2009), 21137.CrossRefGoogle Scholar
Schramm, O. and Sheffield, S., ‘A contour line of the continuum Gaussian free field’, Probab. Theory Related Fields 157(1–2) (2013), 4780.CrossRefGoogle Scholar
Schramm, O., Sheffield, S. and Wilson, D. B., ‘Conformal radii for conformal loop ensembles’, Comm. Math. Phys. 288(1) (2009), 4353.CrossRefGoogle Scholar
Schramm, O. and Wilson, D. B., ‘SLE coordinate changes’, New York J. Math. 11 (2005), 659669. (electronic).Google Scholar
Sepúlveda, A., ‘On thin local sets of the Gaussian free field’. ArXiv e-prints, 2017.Google Scholar
Sheffield, S., ‘Exploration trees and conformal loop ensembles’, Duke Math. J. 147(1) (2009), 79129.CrossRefGoogle Scholar
Sheffield, S., ‘Conformal weldings of random surfaces: SLE and the quantum gravity zipper’, Ann. Probab. 44(5) (2016), 34743545.CrossRefGoogle Scholar
Sheffield, S., ‘Quantum gravity and inventory accumulation’, Ann. Probab. 44(6) (2016), 38043848.CrossRefGoogle Scholar
Sheffield, S. and Werner, W., ‘Conformal loop ensembles: the Markovian characterization and the loop-soup construction’, Ann. of Math. (2) 176(3) (2012), 18271917.CrossRefGoogle Scholar
Smirnov, S., ‘Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits’, C. R. Acad. Sci. Paris Sér. I Math. 333(3) (2001), 239244.CrossRefGoogle Scholar
Smirnov, S., ‘Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model’, Ann. of Math. (2) 172(2) (2010), 14351467.CrossRefGoogle Scholar
Smirnov, S., ‘Discrete complex analysis and probability’, inProceedings of the International Congress of Mathematicians, Vol. I (Hindustan Book Agency, New Delhi, 2010), 595621.Google Scholar
Werner, W., Topics on the Two-dimensional Gaussian Free Field, Lecture Notes of ETH Graduate Course (2015).Google Scholar
Werner, W. and Wu, H., ‘On conformally invariant CLE explorations’, Comm. Math. Phys. 320(3) (2013), 637661.CrossRefGoogle Scholar
Zhan, D., ‘Duality of chordal SLE’, Invent. Math. 174(2) (2008), 309353.CrossRefGoogle Scholar
Zhan, D., ‘Duality of chordal SLE, II’, Ann. Inst. Henri Poincaré Probab. Stat. 46(3) (2010), 740759.CrossRefGoogle Scholar