Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T15:03:47.815Z Has data issue: false hasContentIssue false

PROTEOMICS APPROACHES IN PRE-ECLAMPSIA RESEARCH

Published online by Cambridge University Press:  01 May 2009

OLIVIA CLANCY
Affiliation:
Maternal and Fetal Health Research Centre, St Mary's Hospital, The University of Manchester, Manchester.
JENNY E. MYERS*
Affiliation:
Maternal and Fetal Health Research Centre, St Mary's Hospital, The University of Manchester, Manchester.
*
Dr Jenny Myers, Maternal and Fetal Health Research Centre, University of Manchester, St Mary's Hospital, Hathersage Rd, Manchester, M13 0JH, United Kingdom.

Extract

Much of our current understanding of human gestation is largely based on information extracted from animal and cell models. Although this information has been fundamental for progression of reproductive research, much of it examines biological molecules in isolation rather than the integrated manner in which they function. Disruption to these fundamental processes is the source of pregnancy complications, of which for many (including pre-eclampsia) the exact aetiology has not been fully elucidated. We need to re-examine the limited way by which we approach these problems, and aim to understand pathophysiology in a more inclusive/holistic way.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shankar, R, Gude, N, Cullinane, F, Brennecke, S, Purcell, AW, Moses, EK. An emerging role for comprehensive proteome analysis in human pregnancy research. Reproduction 2005; 129: 685–96.CrossRefGoogle ScholarPubMed
2Peng, J, Gygi, SP. Proteomics: the move to mixtures. J Mass Spectrom 2001; 36: 1083–91.CrossRefGoogle ScholarPubMed
3Domon, B, Aebersold, R. Mass spectrometry and protein analysis. Science 2006; 312: 212–17.CrossRefGoogle ScholarPubMed
4Mann, M, Hendrickson, RC, Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 2001; 70: 437–73.CrossRefGoogle ScholarPubMed
5Anderson, L, Hunter, CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006; 5: 573–88.CrossRefGoogle ScholarPubMed
6MacBeath, G, Schreiber, SL. Printing proteins as microarrays for high-throughput function determination. Science 2000; 289: 1760–763.CrossRefGoogle ScholarPubMed
7Tang, N, Tornatore, P, Weinberger, SR. Current developments in SELDI affinity technology. Mass Spectrom Rev 2004; 23: 3444.CrossRefGoogle ScholarPubMed
8McGuire, JN, Overgaard, J, Pociot, F. Mass spectrometry is only one piece of the puzzle in clinical proteomics. Brief Funct Genomic Proteomic 2008; 7: 7483.CrossRefGoogle ScholarPubMed
9Gillette, MA, Mani, DR, Carr, SA. Place of pattern in proteomic biomarker discovery. J Proteome Res 2005; 4: 1143–154.CrossRefGoogle ScholarPubMed
10Baggerly, KA, Morris, JS, Coombes, KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004; 20: 777–85.CrossRefGoogle ScholarPubMed
11Zhang, Z, Bast, RC Jr., Yu, Y, Li, J, Sokoll, LJ, Rai, AJ et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004; 64: 5882–890.CrossRefGoogle ScholarPubMed
12Fung, ET, Yip, TT, Lomas, L, Wang, Z, Yip, C, Meng, XY et al. Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer 2005; 115: 783–89.CrossRefGoogle ScholarPubMed
13Kaufmann, R.Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology. J Biotechnol 1995; 41: 155–75.CrossRefGoogle ScholarPubMed
14Gonzalez-Buitrago, JM, Ferreira, L, Lorenzo, I. Urinary proteomics. Clin Chim Acta 2007; 375: 4956.CrossRefGoogle ScholarPubMed
15Yates, JR 3rd, Eng, JK, McCormack, AL, Schieltz, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 1995; 67: 1426–436.CrossRefGoogle ScholarPubMed
16Cottrell, JS. Protein identification by peptide mass fingerprinting. Pept Res 1994; 7: 115–24.Google ScholarPubMed
17Mueller, LN, Brusniak, MY, Mani, DR, Aebersold, R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 2008; 7: 5161.CrossRefGoogle ScholarPubMed
18Fenselau, C. A review of quantitative methods for proteomic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 855: 1420.CrossRefGoogle ScholarPubMed
19Chakravarti, B, Gallagher, SR, Chakravarti, DN. Difference gel electrophoresis (DIGE) using CyDye DIGE fluor minimal dyes. Curr Protoc Mol Biol 2005; Chapter 10: Unit 10.23.CrossRefGoogle Scholar
20Aggarwal, K, Choe, LH, Lee, KH. Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 2006; 5: 112–20.CrossRefGoogle ScholarPubMed
21Pierce, A, Unwin, RD, Evans, CA, Griffiths, S, Carney, L, Zhang, L et al. Eight-channel iTRAQ enables comparison of the activity of 6 leukaemogenic tyrosine kinases. Mol Cell Proteomics 2008; 7: 853–63. Epub 2007; Oct 21.CrossRefGoogle Scholar
22Urfer, W, Grzegorczyk, M, Jung, K. Statistics for proteomics: a review of tools for analyzing experimental data. Proteomics 2006; 6 Suppl 2: 4855.CrossRefGoogle ScholarPubMed
23Rifai, N, Gillette, MA, Carr, SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006; 24: 971–83.CrossRefGoogle Scholar
24Anderson, NL, Anderson, NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845–67.CrossRefGoogle ScholarPubMed
25Etzioni, R, Urban, N, Ramsey, S, McIntosh, M, Schwartz, S, Reid, B et al. The case for early detection. Nat Rev Cancer 2003; 3: 243–52.CrossRefGoogle ScholarPubMed
26O'Riordan, E, Gross, SS, Goligorsky, MS. Technology Insight: renal proteomics–at the crossroads between promise and problems. Nat Clin Pract Nephrol 2006; 2: 445–58.CrossRefGoogle Scholar
27Thongboonkerd V. Practical points in urinary proteomics. J Proteome Res 2007; 6: 3881–890.CrossRefGoogle Scholar
28Dunn, MJ, Corbett, JM. Two-dimensional polyacrylamide gel electrophoresis. Methods Enzymol 1996; 271: 177203.CrossRefGoogle ScholarPubMed
29Machtejevas, E, Andrecht, S, Lubda, D, Unger, KK. Monolithic silica columns of various format in automated sample clean-up/multidimensional liquid chromatography/mass spectrometry for peptidomics. J Chromatogr A 2007; 1144: 97101.CrossRefGoogle ScholarPubMed
30Jolly, RA, Goldstein, KM, Wei, T, Gao, H, Chen, P, Huang, S et al. Pooling samples within microarray studies: a comparative analysis of rat liver transcription response to prototypical toxicants. Physiol Genomics 2005; 22: 346–55.CrossRefGoogle ScholarPubMed
31Baumwell, S, Karumanchi, SA. Pre-eclampsia: clinical manifestations and molecular mechanisms. Nephron Clin Pract 2007; 106: c7281.CrossRefGoogle ScholarPubMed
32Tjoa, ML, Oudejans, CB, van Vugt, JM, Blankenstein, MA, van Wijk, IJ. Markers for presymptomatic prediction of preeclampsia and intrauterine growth restriction. Hypertens Pregnancy 2004; 23: 171–89.CrossRefGoogle ScholarPubMed
33Baumann, MU, Bersinger, NA, Surbek, DV. Serum markers for predicting pre-eclampsia. Mol Aspects Med 2007; 28: 227–44.CrossRefGoogle ScholarPubMed
34Ilekis, JV, Reddy, UM, Roberts, JM. Preeclampsia–a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci 2007; 14: 508–23.CrossRefGoogle ScholarPubMed
35Meads, C, Cnossen, J, Meher, S, Juarez-Garcia, A, ter Riet, G, Duley, L et al. Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling. Health Technol Asess 2008; 12: 1270.CrossRefGoogle ScholarPubMed
36Buhimschi, IA, Zhao, G, Rosenberg, VA, Abdel-Razeq, S, Thung, S, Buhimschi, CS. Multidimensional proteomics analysis of amniotic fluid to provide insight into the mechanisms of idiopathic preterm birth. PLoS ONE 2008; 3: e2049.CrossRefGoogle ScholarPubMed
37Buhimschi, IA, Zambrano, E, Pettker, CM, Bahtiyar, MO, Paidas, M, Rosenberg, VA, et al. Using proteomic analysis of the human amniotic fluid to identify histologic chorioamnionitis. Obstet Gynecol 2008; 111: 403–12.CrossRefGoogle ScholarPubMed
38Buhimschi, CS, Bhandari, V, Hamar, BD, Bahtiyar, MO, Zhao, G, Sfakianaki, AK et al. Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med 2007; 4: e18.CrossRefGoogle ScholarPubMed
39Romero, R, Espinoza, J, Rogers, WT, Moser, A, Nien, JK, Kusanovic, JP, et al. Proteomic analysis of amniotic fluid to identify women with preterm labor and intra-amniotic inflammation/infection: the use of a novel computational method to analyze mass spectrometric profiling. J Matern Fetal Neonatal Med 2008; 21: 367–88.CrossRefGoogle ScholarPubMed
40Bujold, E, Romero, R, Kusanovic, JP, Erez, O, Gotsch, F, Chaiworapongsa, T, et al. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry. J Matern Fetal Neonatal Med 2008; 21: 697713.CrossRefGoogle ScholarPubMed
41Hoang, VM, Foulk, R, Clauser, K, Burlingame, A, Gibson, BW, Fisher, SJ. Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 2001; 40: 4077–86.CrossRefGoogle ScholarPubMed
42Romero, R, Kusanovic, JP, Than, NG, Erez, O, Gotsch, F, Espinoza, J et al. First-trimester maternal serum PP13 in the risk assessment for preeclampsia. Am J Obstet Gynecol 2008; 199: 122. e1–122.e11. Epub. 2008 Jun 9.CrossRefGoogle ScholarPubMed
43Nicolaides, KH, Bindra, R, Turan, OM, Chefetz, I, Sammar, M, Meiri, H et al. A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol 2006; 27: 13–7.CrossRefGoogle ScholarPubMed
44Ishioka, S, Ezaka, Y, Umemura, K, Hayashi, T, Endo, T, Saito, T. Proteomic analysis of mechanisms of hypoxia-induced apoptosis in trophoblastic cells. Int J Med Sci 2007; 4: 3644.CrossRefGoogle Scholar
45Sawicki, G, Dakour, J, Morrish, DW. Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences. Proteomics 2003; 3: 2044–51.CrossRefGoogle ScholarPubMed
46Sun, LZ, Yang, NN, De, W, Xiao, YS. Proteomic analysis of proteins differentially expressed in preeclamptic trophoblasts. Gynecol Obstet Invest 2007; 64: 1723.CrossRefGoogle ScholarPubMed
47Chappell, L, Bewley, S. Pre-eclamptic toxaemia: the role of uterine artery Doppler. Br J Obstet Gynaecol 1998; 105: 379–82.CrossRefGoogle ScholarPubMed
48Robinson, NJ, Wareing, M, Hudson, NK, Blankley, RT, Baker, PN, Aplin, JD et al. Oxygen and the liberation of placental factors responsible for vascular compromise. Lab Invest 2008; 88: 293305.CrossRefGoogle ScholarPubMed
49Watanabe, H, Hamada, H, Yamada, N, Sohda, S, Yamakawa-Kobayashi, K. et al. (Proteome analysis reveals elevated serum levels of clusterin in patients with preeclampsia. Proteomics 2004; 4: 537–43.CrossRefGoogle ScholarPubMed
50Wang, CC, Yim, KW, Poon, TC, Choy, KW, Chu, CY, Lui, WT et al. Innate immune response by ficolin binding in apoptotic placenta is associated with the clinical syndrome of preeclampsia. Clin Chem 2007; 53:4252.CrossRefGoogle ScholarPubMed
51Vascotto, C, Salzano, AM, D'Ambrosio, C, Fruscalzo, A, Marchesoni, D, di Loreto, C et al. Oxidized transthyretin in amniotic fluid as an early marker of preeclampsia. J Proteome Res 2007; 6: 160–70.CrossRefGoogle ScholarPubMed
52Park, JS, Oh, KJ, Norwitz, ER, Han, JS, Choi, HJ, Seong, HS et al. Identification of proteomic biomarkers of preeclampsia in amniotic fluid using SELDI-TOF mass spectrometry. Reprod Sci 2008; 15: 457–68.CrossRefGoogle ScholarPubMed
53Norwitz, ER, Tsen, LC, Park, JS, Fitzpatrick, PA, Dorfman, DM, Saade, GR et al. Discriminatory proteomic biomarker analysis identifies free hemoglobin in the cerebrospinal fluid of women with severe preeclampsia. Am J Obstet Gynecol 2005; 193: 957–64.CrossRefGoogle ScholarPubMed
54Myers, J, Macleod, M, Reed, B, Harris, N, Mires, G, Baker, P. Use of proteomic patterns as a novel screening tool in pre-eclampsia. J Obstet Gynaecol 2004; 24: 873–74.CrossRefGoogle ScholarPubMed
55Buhimschi, IA, Zhao, G, Funai, EF, Harris, N, Sasson, IE, Bernstein, IM et al. Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 2008; 199: 551 e1–16.CrossRefGoogle ScholarPubMed
56Deutsch, EW, Lam, H, Aebersold, R.PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 2008; 9: 429–34.CrossRefGoogle ScholarPubMed