Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T14:35:45.463Z Has data issue: false hasContentIssue false

Prenatal diagnosis using fetal cells in the maternal circulation

Published online by Cambridge University Press:  10 October 2008

D Gänshirt*
Affiliation:
Departments of Obstetrics and Gynaecology, University of Münster, Germany
HSP Garritsen
Affiliation:
Transfusion Medicine, University of Münster, Germany.
W Holzgreve
Affiliation:
Departments of Obstetrics and Gynaecology, University of Münster, Germany
*
Dr D Gänshirt, Pränatale Medizin, Zentrum für Frauenheilkunde, Technologiehof, Mendelstr. 11, D-48149 Münster, Germany.

Extract

Since the introduction of ultrasound into obstetrics during the 1960s, there has been rapid progress in the detection of genetic and nongenetic defects in utero. With the development of sampling procedures like amniocentesis, chorionic villus sampling (CVS) and fetal blood sampling, the obstetrician has been able to obtain fetal tissue and the parallel improvement in laboratory techniques has allowed the diagnosis of chromosomal anomalies and single gene defects from fetal cells. Amniocentesis and CVS have become well established techniques for routine prenatal diagnosis of chromosomal and metabolic disorders and fetal tissue is now accessible throughout all three trimesters.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Holzgreve, W, Nippert, I, Gänshirt-Ahlert, D, Schloo, R, Miny, P. Immediate and long-term applications of technology. Clin Obstet Gynecol 1993; 36: 476–84.CrossRefGoogle ScholarPubMed
2Tabor, A, Madsen, M, Obel, EB, Philip, J, Bang, J, Norgard-Pedersen, B. Randomized controlled trial of genetic amniocentesis in 4606 low-risk women. Lancet 1986; 1: 1287–93.CrossRefGoogle ScholarPubMed
3Canadian Collaborative CVS Amniocentesis Trial Group. Multicentre randomized clincal trial of chorionic villus sampling and amniocentesis. Lancet 1989; 1: 16.Google Scholar
4Wald, NJ, Cuckle, HS, Densem, JW, Nanchahal, K, Royston, P, Chard, T et al. Maternal serum screening for Down’ syndrome in early pregnancy. Br Med J 1988; 297: 883–87.CrossRefGoogle ScholarPubMed
5Schmorl, G. Pathologisch-anatomische Untersuchungenüber Puerperaleklampsie. Leipzig: Vogel, 1893.Google Scholar
6Trotter, RF, Tieche, HL. Maternal death due to pulmonary embolism of trophoblast cells. Am J Obstet Gynecol 1956; 71: 1114–18.CrossRefGoogle Scholar
7Douglas, GW, Thomas, L, Carr, M, Cullen, NM, Morris, R. Trophoblast in the circulating blood during pregnancy. Am J Obstet Gynecol 1959; 78: 960–73.CrossRefGoogle ScholarPubMed
8Clayton, EM, Feldhaus, WD, Whitacre, FE. Fetal erythrocytes in the maternal circulation of pregnant women. Obstet Gynecol 1964; 23: 915–19.Google ScholarPubMed
9Walknowska, J, Conte, FA, Grumback, MM. Practical and theoretical implications of fetal/maternal lymphocyte transfer. Lancet 1969; i: 1119–22.CrossRefGoogle Scholar
10Grouchy, J de, Trebuchet, C. Transfusion fetomaternelle de lymphocytes sanguins de detection du sexe du foetus. Ann Genet 1971; 14: 133–37.Google Scholar
11Schröder, J, Chapelle, A de la. Fetal lymphocytes in the maternal blood. Blood 1972; 39: 153–62.CrossRefGoogle ScholarPubMed
12Schröder, J, Tillikainen, A, Chapelle, A de la. Fetal lymphocytes in the maternal circulation after delivery. I: Cytological aspects. Transplantation 1974; 17: 346–54.CrossRefGoogle ScholarPubMed
13Grosset, L, Barrelet, V, Odartchenko, N. Antenatal fetal sex determination from maternal blood during early pregnancy. Am J Obstet Gynecol 1974; 120: 6063.CrossRefGoogle ScholarPubMed
14Seibers, JW, Knauf, I, Hillemanns, HG. Antenatal sex determination in blood from pregnant women. Humangenetik 1975; 28: 273–80.Google Scholar
15Zilliacus, R, Chapelle, A de la, Schröder, J, Tiilikainen, A, Kohne, E, Kleihauer, E. Transplacental passage of foetal blood cells. Scand J Haematol 1975; 15: 333–38.CrossRefGoogle ScholarPubMed
16Ciaranfi, A, Curchod, A, Odarchenko, N. Survie de lymphocytes foetaux dans le sang maternal post-partum. Schweiz Med Wochenschr 1977; 107: 134–38.Google Scholar
17Selypes, A, Lorencz, R. A noninvasive method for determination of the sex and karyotype of the fetus from the maternal blood. Hum Genet 1988; 79: 357–59.CrossRefGoogle ScholarPubMed
18Youssef, M, Shulman, LP, Tharapel, AT, Simpson, JL, Elias, S. Failure to document fetal cells in maternal circulation using the Selypes-Lorencz ‘air-culture’ cytogenetic technique. Hum Genet 1990; 85: 133–34.CrossRefGoogle ScholarPubMed
19Kulozik, A, Pawlowitzki, IH. Fetal cells in the maternal circulation: detection by direct AFP-immunofluorescence. Human Genet 1982; 62: 221–24.CrossRefGoogle ScholarPubMed
20Goodfellow, CF, Taylor, PV. Extraction and identification of trophoblast cells in peripheral blood during pregnancy. Br J Obstet Gynaecol 1982; 89: 6568.CrossRefGoogle ScholarPubMed
21Covone, AE, Mutton, D, Johnson, PM, Adinolfi, M. Trophoblast cells in peripheral blood from pregnant women. Lancet 1984; ii: 841–43.CrossRefGoogle Scholar
22Pool, C, Aplin, JD, Taylor, GM, Boyd, RDH. Trophoblast cells and maternal blood. Lancet 1987; i: 804805.CrossRefGoogle Scholar
23Medearis, AL, Hensleigh, PA, Parks, DR, Herzenberg, LA. Detection of fetal erythrocytes in maternal blood post partum with the fluorescence-activated cell sorter. Am J Obstet Gynecol 1984; 148: 290–95.CrossRefGoogle ScholarPubMed
24Bertero, MT, Camaschella, C, Serra, A, Bergui, L, Caligaris-Cappio, F. Circulating ‘trophoblast’ cells in pregnancy have maternal genetic markers. Prenat Diagn 1988; 8: 585–90.CrossRefGoogle ScholarPubMed
25Gänshirt-Ahlert, D, Pohlschmidt, M, Gal, A, Miny, P, Horst, J, Holzgreve, W. Ratio of fetal to maternal DNA is less than 1 in 5000 at different gestational ages in maternal blood. Clin Genet 1990; 38: 3843.CrossRefGoogle ScholarPubMed
26Lo, YMD, Patel, P, Wainscoat, JS, Sampietro, M, Gillmer, MDG, Fleming, KA. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet 1989; ii: 1363–65.CrossRefGoogle Scholar
27Camashella, C, Alfarano, A, Gottardi, E, Travi, M, Primignani, P, Cappio, FC et al. Prenatal diagnosis of fetal hemoglobin Lepore-Boston disease on maternal peripheral blood. Blood 1990; 75: 2102–106.CrossRefGoogle Scholar
28Lo, YMD, Patel, P, Sampietro, M, Gillmer, MDG, Fleming, KA, Wainscoat, JS. Detection of a single-copy fetal DNA sequence from maternal blood. Lancet 1990; i: 1463–64.CrossRefGoogle Scholar
29Weier, HU, Reitsma, M, Gray, JW. Detection of fetal cells by in vitro DNA amplification. In: Burger, G et al. eds, Advances in analytical cellular pathology. Amsterdam: Elsevier Science Publishers DV, 1990; 105106.Google Scholar
30Gänshirt-Ahlert, D, Basak, N, Aidynli, K, Holzgreve, W. Fetal DNA in uterine vein blood. Obstet Gynecol 1992; 80: 601603.Google ScholarPubMed
31Wessman, M, Ylinen, K, Knuutila, S. Fetal granulocytes in maternal venous blood detected by in situ hybridization. Prenat Diagn 1992; 12: 9931000.CrossRefGoogle ScholarPubMed
32Hamada, H, Arinami, T, Kubo, T, Hamaguchi, H, Iwasaki, H. Fetal nucleated cells in maternal peripheral blood: frequency and relationship to gestational age. Hum Genet 1993; 91: 427–32.CrossRefGoogle ScholarPubMed
33Thomas, MR, Williamson, R, Craft, I, Yazdami, N, Rodeck, CH. Y chromosome sequence DNA amplified from peripheral blood of women in early pregnancy. Lancet 1994; i: 413–14.CrossRefGoogle Scholar
34Mueller, UW, Hawes, CS, Wright, AE, Petropoulis, A, Debone, E, Firgaira, FA et al. Isolation of fetal trophoblast cells from peripheral blood of pregnant women. Lancet 1990; ii: 197200.CrossRefGoogle Scholar
35Adinolfi, M, Camporese, C, Carr, T. Gene amplification to detect fetal nucleated cells in pregnant women. Lancet 1989; ii: 328–29.CrossRefGoogle Scholar
36Bruch, JF, Métézeau, P, Garcia-Fonknechten, N, Richard, Y, Tricottet, V, Hsi, BL et al. Trophoblast-like cells sorted from peripheral maternal blood using flow-cytometry: a multiparametric study involving transmission electron microscopy and fetal DNA amplification. Prenat Diagn 1991; 11: 787–98.CrossRefGoogle ScholarPubMed
37Cacheux, V, Milesi-Fluet, C, Tachdjian, G, Druart, L, Bruch, JF, Hsi, BL et al. Detection of 47, XYY trophoblast fetal cells in maternal blood by fluorescence in situ hybridization after using immunomagnetic lymphocyte depletion and flow cytometry sorting. Fetal Diagn Ther 1992; 7: 190–94.CrossRefGoogle Scholar
38Hawes, CS, Suskin, HA, Kalionis, B, Mueller, UW, Casey, G, Hall, J et al. Detection of paternally inherited mutations for β-thalassaemia in trophoblast isolated from peripheral maternal blood. In: Simpson, JL, Elias, S eds, Fetal cells in maternal blood: prospects for noninvasive prenatal diagnosis. Ann NY Acad Sci 1994; 731: 181–85.Google Scholar
39Herzenberg, LA, Bianchi, DW, Schröder, J, Cann, HM, Iverson, GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci 1979; 76: 1453–55.CrossRefGoogle ScholarPubMed
40Iverson, GM, Bianchi, DW, Cann, HM, Herzenberg, LA. Detection and isolation of fetal cells from maternal blood using the fluorescence-activated cell sorter (FACS). Prenat Diagn 1981; 1: 6173.CrossRefGoogle Scholar
41Yeoh, SC, Sargent, IL, Redman, CWG, Wordsworth, BP, Thein, SL. Detection of fetal cells in maternal blood. Prenat Diagn 1991; 11: 117–23.CrossRefGoogle ScholarPubMed
42Tharapel, AT, Jaswaney, VL, Dockter, ME, Wachtel, SS, Chandler, RW, Simpson, JL et al. Inability to detect fetal metaphases in flow-sorted lymphocyte cultures based on maternal-fetal HLA differences. Fetal Diagn Ther 1993; 8: 95101.CrossRefGoogle ScholarPubMed
43Holzgreve, W, Garritsen, HSP, Gänshirt-Ahlert, D. Fetal cells in the maternal circulation. J Reprod Med 1992; 37: 410–18.Google ScholarPubMed
44Bianchi, DW, Zickwolf, GK, Geifman, OH, Klinger, KW, Erikson, MS, Williams, JM. Erythroid specific antibodies enhance separation of fetal nucleated erythrocytes from maternal blood. Prenat Diagn 1992; 12: S2.Google Scholar
45Holzgreve, W, Gänshirt-Ahlert, D, Dohr, A, Helmer, L, Miny, P. Magnetically activated cell sorting for the isolation of fetal cells from maternal circulation. Prenat Diagn 1992; 12: S17.Google Scholar
46Simpson, JL, Elias, S. Isolating fetal erythroblasts from maternal blood with identification of fetal trisomy by fluorescent in situ hybridization (FISH). Prenat Diagn 1992; 12: S34.Google Scholar
47Klinger, K, Landes, G, Shook, D, Harvey, R, Lopez, L, Locke, P et al. Rapid detection of chromosome aneuploidies in uncultured amniocytes by using fluorescence in situ hybridization. Am J Obstet Gynecol 1992; 51: 5565.Google ScholarPubMed
48Bianchi, DW, Mahr, A, Zickwolf, GK, Houseal, TW, Flint, AF, Klinger, KW. Detection of fetal cells with 47, XY+21 karyotype in maternal peripheral blood. Hum Genet 1992; 90: 368–70.CrossRefGoogle ScholarPubMed
49Gänshirt-Ahlert, D, Börjesson-Stoll, R, Burschyk, M, Dohr, A, Garritsen, HSP, Helmer, E et al. Detection of fetal trisomies 21 and 18 from maternal blood using triple gradient and magnetic cell sorting. Am J Reprod Immunol 1993; 30: 194201.CrossRefGoogle ScholarPubMed
50Price, JO, Elias, S, Wachtel, SS, Klinger, K, Dockter, M, Tharapel, A et al. Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am J Obstet Gynecol 1991; 165: 1731–37.CrossRefGoogle ScholarPubMed
51Bianchi, DW, Zickwolf, GK, Yih, MC, Flint, AF, Geifman, OH, Erikson, MS et al. Erythroid-specific antibodies enhance detection of fetal nucleated erythrocytes in maternal blood. Prenat Diagn 1993; 13: 293300.CrossRefGoogle ScholarPubMed
52Bianchi, DW, Sylvester, S, Zickwolf, GK, Maria, MA de, Weil, GJ, Geifman, OH. Fetal stem cells persist in maternal blood for decades post partum. Am J Hum Genet 1993; 53: 251.Google Scholar
53Gänshirt, D, Börjesson-Stoll, R, Burschyk, M, Garritsen, HSP, Miny, P, Neusser, M et al. Non invasive prenatal diagnosis: isolation of fetal cells from maternal circulation. In: Zakut, H ed, 7th International Conference on Early Prenatal Diagnosis, 1994: 1926.Google Scholar
54Zheng, Y, Carter, NP, Price, CM, Colman, SM, Milton, PY, Hackett, GA et al. Prenatal diagnosis from maternal blood: simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes isolated by negative magnetic cell sorting. J Med Genet 1993; 30: 1051–56.CrossRefGoogle ScholarPubMed
55Bianchi, DW, Maria, M de, Vadnais, TJ, Zickwolf, GK, Weil, GJ. Trials in recovering fetal cells from maternal blood. In: Zakut, H ed, 7th International Conference on Early Prenatal Diagnosis, 1994: 713.Google Scholar
56Bianchi, DW, Flint, AF, Pizzimenti, MF, Knoll, JHM, Latt, SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci 1990; 87: 3279–83.CrossRefGoogle ScholarPubMed
57Bianchi, DW, Stewart, YE, Garber, MF, Lucotte, G, Flint, AF. Possible effect of gestational age on the detection of fetal nucleated erythrocytes in maternal blood. Prenat Diagn 1991; 11: 523–28.CrossRefGoogle ScholarPubMed
58Geifman, OH, Vadnais, TJ, Maria, MA de, Weil, GJ, Capeless, E, Bianchi, DW. Detection of fetal HLA-DQ alpha sequences in maternal blood. Am J Hum Genet 1993; 53: 250.Google Scholar
59Geifman-Holtzman, O, Maria, MA de, Vadnais, TJ, Bernstein, IM, Capeless, EL, Binachi, DW. Determination of fetal rhesus D Rh(D) type by PCR amplification of fetal cells in flow sorted Rh(D) negative maternal blood. In: Zakut, H ed, 7th International Conference on Early Prenatal Diagnosis 1994: 4144.Google Scholar
60Takabayashi, H, Kuwabara, S, Ukita, T, Igarashi, T. Fetal nucleated erythrocyte retrieval from maternal blood. In: Zakut, H ed, 7th International Conference on Early Prenatal Diagnosis 1994: 4551.Google Scholar