Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T00:44:22.712Z Has data issue: false hasContentIssue false

MYOMETRIAL ACTIVATION – COORDINATION, CONNECTIVITY AND CONTRACTILITY

Published online by Cambridge University Press:  01 November 2007

DAVID A MACINTYRE
Affiliation:
Mothers and Babies Research Centre, The University of Newcastle, John Hunter Hospital, Newcastle, New South Wales, Australia
ENG-CHENG CHAN
Affiliation:
Mothers and Babies Research Centre, The University of Newcastle, John Hunter Hospital, Newcastle, New South Wales, Australia
ROGER SMITH*
Affiliation:
Mothers and Babies Research Centre, The University of Newcastle, John Hunter Hospital, Newcastle, New South Wales, Australia
*
Roger Smith, Mothers and Babies Research Centre, The University of Newcastle, John Hunter Hospital, 1 Lookout Road, New Lambton Heights, Newcastle, New South Wales, Australia.

Extract

One of the most important stages of pregnancy is the activation of uterine contractions that result in the expulsion of the fetus. The timely onset of labour is clearly important for a healthy start to life but incomplete understanding of the precise mechanisms regulating labour onset have prohibited the development of effective and safe treatments for preterm labour. This review explores the activation of the myometrium at labour onset, focussing on mechanisms of uterine contractility, including those proteins that play an important role in smooth muscle contractility. The review primarily focuses on human work but in the absence of human data describes animal studies. A broad overview of myometrial contraction mechanisms is provided before discussing more detailed aspects and identifying areas where uncertainty remains. Also discussed is the recent application of ‘omics’ based approaches to parturition research, which has facilitated an increase in the understanding of myometrial activation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Olson, DM, Mijovic, JE, Sadowsky, DW. Control of human parturition. Semin Perinatol 1995; 19: 5263.CrossRefGoogle ScholarPubMed
2Challis, JRG, Matthews, SG, Gibb, W, Lye, SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev 2000; 21: 514–50.Google Scholar
3Harnett, KM, Biancani, P. Calcium-dependent and calcium-independent contractions in smooth muscles. Am J Med 2003; 115: 24S30S.CrossRefGoogle ScholarPubMed
4Lopez Bernal, A. Mechanisms of labour–biochemical aspects. BJOG 2003; 110: 3945.CrossRefGoogle ScholarPubMed
5Sanborn, BM, Ku, CY, Shlykov, S, Babich, L. Molecular signalling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig 2005; 12: 479–87.CrossRefGoogle ScholarPubMed
6Parkington, HC, Coleman, HA. Excitability in uterine smooth muscle. Front Horm Res 2001; 27: 179200.CrossRefGoogle ScholarPubMed
7Parkington, HC, Tonta, MA, Davies, NK, Brennecke, SP, Coleman, HA. Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and f2alpha: involvement of the Na+ pump. J Physiol 1999; 514: 229–43.CrossRefGoogle ScholarPubMed
8Parkington, HC, Coleman, HA. Ionic mechanisms underlying action potentials in myometrium. Clin Exp Pharmacol Physiol 1988; 15: 657–65.CrossRefGoogle ScholarPubMed
9Wray, S, Jones, K, Kupittayanant, S, Li, Y, Matthew, A, Monir-Bishty, E, et al. Calcium signaling and uterine contractility. J Soc Gynecol Investi 2003; 10: 252–64.CrossRefGoogle ScholarPubMed
10Khan, RN, Matharoo-Ball, B, Arulkumaran, S, Ashford, ML. Potassium channels in the human myometrium. Exp Physiol 2001; 86: 255–64.CrossRefGoogle ScholarPubMed
11Brainard, AM, Miller, AJ, Martens, JR, England, SK. Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol 2005; 289: C4957.CrossRefGoogle ScholarPubMed
12Korovkina, VP, Brainard, AM, England, SK. Translocation of an endoproteolytically cleaved maxi-K channel isoform: mechanisms to induce human myometrial cell repolarization. J Physiol 2006; 573: 329–41.CrossRefGoogle ScholarPubMed
13Sanborn, BM. Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investi 2000; 7: 411.CrossRefGoogle ScholarPubMed
14Kawarabayashi, T, Ikeda, M, Sugimori, H, Nakano, H. Spontaneous electrical activity and effects of noradrenaline on pregnant human myometrium recorded by the single sucrose-gap method. Acta Physiol 1986; 67: 7182.Google ScholarPubMed
15Anwer, K, Oberti, C, Perez, GJ, Perez-Reyes, N, McDougall, JK, Monga, M, et al. Calcium-activated K+ channels as modulators of human myometrial contractile activity. Am J Physiol 1993; 265: C976–85.CrossRefGoogle ScholarPubMed
16Young, RC, Smith, LH, McLaren, MD. T-type and L-type calcium currents in freshly dispersed human uterine smooth muscle cells. Am J Obstet Gynecol 1993; 169: 785–92.CrossRefGoogle ScholarPubMed
17Jmari, K, Mironneau, C, Mironneau, J. Inactivation of calcium channel current in rat uterine smooth muscle: evidence for calcium- and voltage-mediated mechanisms. J Physiol 1986; 380: 111–26.CrossRefGoogle ScholarPubMed
18Mershon, JL, Mikala, G, Schwartz, A. Changes in the expression of the L-type voltage-dependent calcium channel during pregnancy and parturition in the rat. Biol Reprod 1994; 51: 993–99.CrossRefGoogle ScholarPubMed
19Ferguson, JE 2nd, Schutz, T, Pershe, R, Stevenson, DK, Blaschke, T. Nifedipine pharmacokinetics during preterm labor tocolysis. Am J Obstet Gynecol 1989; 161: 1485–90.CrossRefGoogle ScholarPubMed
20Smith, P, Anthony, J, Johanson, R. Nifedipine in pregnancy. BJOG 2000; 107: 299307.CrossRefGoogle ScholarPubMed
21Young, RC, Zhang, P. Inhibition of in vitro contractions of human myometrium by mibefradil, a T-type calcium channel blocker: support for a model using excitation-contraction coupling, and autocrine and paracrine signalling mechanisms. J Soc Gynecol Investi 2005; 12: e712.CrossRefGoogle Scholar
22Blanks, AM, Zhao, ZH, Shmygol, A, Bru-Mercier, G, Astle, S, Thornton, S. Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium. J Physiol 2007; 581: 915–26.CrossRefGoogle ScholarPubMed
23Sanborn, BM, Yue, C, Wang, W, Dodge, KL. G protein signalling pathways in myometrium: affecting the balance between contraction and relaxation. Rev Reprod 1998; 3: 196205.CrossRefGoogle ScholarPubMed
24Taggart, MJ, Wray, S. Contribution of sarcoplasmic reticular calcium to smooth muscle contractile activation: gestational dependence in isolated rat uterus. J Physiol 1998; 511: 133–44.CrossRefGoogle ScholarPubMed
25Litime, MH, Pointis, G, Breuiller, M, Cabrol, D, Ferre, F. Disappearance of beta-adrenergic response of human myometrial adenylate cyclase at the end of pregnancy. J Clin Endocrinol Metab 1989; 69: 16.CrossRefGoogle ScholarPubMed
26Chapman, NR, Smyrnias, I, Anumba, DO, Europe-Finner, GN, Robson, SC. Expression of the GTP-binding protein (Galphas) is repressed by the nuclear factor kappaB RelA subunit in human myometrium. Endocrinology 2005; 146: 49945002.CrossRefGoogle ScholarPubMed
27MacDougall, MW, Europe-Finner, GN, Robson, SC. Human myometrial quiescence and activation during gestation and parturition involve dramatic changes in expression and activity of particulate type II (RII alpha) protein kinase A holoenzyme. J Clin Endocrinol Metab 2003; 88: 2194–205.CrossRefGoogle ScholarPubMed
28Europe-Finner, GN, Phaneuf, S, Watson, SP, Lopez Bernal, A. Identification and expression of G-proteins in human myometrium: up-regulation of G alpha s in pregnancy. Endocrinology 1993; 132: 2484–490.CrossRefGoogle Scholar
29Europe-Finner, GN, Phaneuf, S, Tolkovsky, AM, Watson, SP, Lopez Bernal, A. Down-regulation of G alpha s in human myometrium in term and preterm labor: a mechanism for parturition. J Clin Endocrinol Metab 1994; 79: 1835–839.Google Scholar
30Europe-Finner, GN, Phaneuf, S, Mardon, HJ, Lopez Bernal, A. Human myometrial G alpha s-small (with serine) and Gs-large (with serine) messenger ribonucleic acid splice variants promote the increased expression of 46- and 54-kilodalton G alpha s protein isoforms in pregnancy and their down-regulation during labor. J Clin Endocrinol Metab 1996; 81: 1069–75.Google Scholar
31Hirata, K, Kikuchi, A, Sasaki, T, Kuroda, S, Kaibuchi, K, Matsuura, Y, et al. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem 1992; 267: 8719–722.CrossRefGoogle ScholarPubMed
32Moran, CJ, Friel, AM, Smith, TJ, Cairns, M, Morrison, JJ. Expression and modulation of Rho kinase in human pregnant myometrium. Mol Hum Reprod 2002; 8: 196200.CrossRefGoogle ScholarPubMed
33Moore, F, Da Silva, C, Wilde, JI, Smarason, A, Watson, SP, Lopez Bernal, A. Up-regulation of p21- and RhoA-activated protein kinases in human pregnant myometrium. Biochem Biophys Res Commun 2000; 269: 322–26.CrossRefGoogle ScholarPubMed
34Friel, AM, Curley, M, Ravikumar, N, Smith, TJ, Morrison, JJ. Rho A/Rho kinase mRNA and protein levels in human myometrium during pregnancy and labor. J Soc Gynecol Investig 2005; 12: 2027.CrossRefGoogle Scholar
35Garfield, RE, Ali, M, Yallampalli, C, Izumi, H. Role of gap junctions and nitric oxide in control of myometrial contractility. Semin Perinatol 1995; 19: 4151.CrossRefGoogle ScholarPubMed
36Ciray, HN, Fu, X, Olovsson, M, Ahlsen, G, Shuman, C, Lindblom, B, et al. Presence and localization of connexins 43 and 26 in cell cultures derived from myometrial tissues from nonpregnant and pregnant women and from leiomyomas. Am J Obstet Gynecol 2000; 182: 926–30.CrossRefGoogle ScholarPubMed
37Willecke, K, Eiberger, J, Degen, J, Eckardt, D, Romualdi, A, Guldenagel, M, et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 2002; 383: 725–37.CrossRefGoogle ScholarPubMed
38Balducci, J, Risek, B, Gilada, NB, Hand, A, Egan, JF, Vintzileous, AM. Gap junction formation in human myometrium: a key to preterm labor? Am J Obstet Gynecol 1994; 168: 1609–615.CrossRefGoogle Scholar
39Garfield, RE, Hayashi, RH. Appearance of gap junction in the myometrium of woman during labor. Am J Obstet Gynecol 1981; 140: 254–60.CrossRefGoogle ScholarPubMed
40Tabb, T, Thilander, G, Grover, A, Hertzberg, E, Garfield, R. An immunochemical and immunocytologic study of the increase in myometrial gap junctions (and connexin 43) in rats and humans during pregnancy. Am J Obstet Gynecol 1992; 167: 559–67.CrossRefGoogle ScholarPubMed
41Albrecht, JL, Atal, NS, Tadros, PN, Orsino, A, Lye, SJ, Sadovsky, Y, et al. Rat uterine myometrium contains the gap junction protein connexin45, which has a differing temporal expression pattern from connexin43. Am J Obstet Gynecol 1996; 175: 853–58.CrossRefGoogle Scholar
42Kilarski, WM, Dupont, E, Coppen, S, Yeh, HI, Vozzi, C, Gourdie, RG, et al. Identification of two further gap-junction proteins, connexin40 and connexin45, in human myometrial smooth muscle cells at term. Eur J Biochem 1998; 75: 18.Google ScholarPubMed
43Chow, L, Lye, SJ. Expression of the gap junction protien connexin-43 is increased in the human myometrium toward term and with the onset of labor. Am J Obstet Gynecol 1994; 3170: 788–95.CrossRefGoogle Scholar
44Ou, CW, Orsino, A, Lye, SJ. Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology 1997; 138: 5398–407.CrossRefGoogle ScholarPubMed
45Ou, CW, Chen, ZQ, Qi, S, Lye, SJ. Increased expression of the rat myometrial oxytocin receptor messenger ribonucleic acid during labor requires both mechanical and hormonal signals. Biol Reprod 1998; 59: 1055–61.CrossRefGoogle ScholarPubMed
46Sparey, C, Robson, SC, Bailey, J, Lyall, F, Europe-Finner, GN. The differential expression of myometrial connexin-43, cyclooxygenase-1 and -2, and Gs alpha proteins in the upper and lower segments of the human uterus during pregnancy and labor. J Clin Endocrinol Metab 1999; 84: 1705–710.Google ScholarPubMed
47Reaume, AG, de Sousa, PA, Kulkarni, S, Langille, BL, Zhu, D, Davies, TC, et al. Cardiac malformation in neonatal mice lacking connexin43. Science 1995; 267: 1831–834.CrossRefGoogle ScholarPubMed
48Döring, B, Shynlova, O, Tsui, P, Eckardt, D, Janssen-Bienhold, U, Hofmann, F, et al. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J Cell Sci 2006; 119: 1715–722.CrossRefGoogle ScholarPubMed
49Hirst, GD, Ward, SM. Interstitial cells: involvement in rhythmicity and neural control of gut smooth muscle. J Physiol 2003; 550: 337–46.CrossRefGoogle ScholarPubMed
50Popescu, LM, Ciontea, SM, Cretoiu, D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci 2007; 1101: 139–65.CrossRefGoogle ScholarPubMed
51Duquette, RA, Shmygol, A, Vaillant, C, Mobasheri, A, Pope, M, Burdyga, T, et al. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod 2005; 72: 276–83.CrossRefGoogle ScholarPubMed
52Ciontea, SM, Radu, E, Regalia, T, Ceafalan, L, Cretoiu, D, Gherghiceanu, M, et al. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med 2005; 9: 407–20.CrossRefGoogle ScholarPubMed
53Woodrum, D, Pipkin, W, Tessier, D, Komalavilas, P, Brophy, CM. Phosphorylation of the heat shock-related protein, HSP20, mediates cyclic nucleotide-dependent relaxation. J Vasc Surg 2003; 37: 874–81.CrossRefGoogle ScholarPubMed
54Gerthoffer, WT. Dissociation of myosin phosphorylation and active tension during muscarinic stimulation of tracheal smooth muscle. J Pharmacol Exp Ther 1987; 240: 815.Google ScholarPubMed
55Rembold, CM, Murphy, RA. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res 1988; 63: 593603.CrossRefGoogle ScholarPubMed
56Himpens, B, Kitazawa, T, Somlyo, AP. Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch 1990; 417: 2128.CrossRefGoogle ScholarPubMed
57Morgan, JP, Morgan, KG. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol 1984; 351: 155–67.CrossRefGoogle ScholarPubMed
58Morgan, KG, Gangopadhyay, SS. Invited review: cross-bridge regulation by thin filament-associated proteins. J Appl Physiol 2001; 91: 953–62.CrossRefGoogle ScholarPubMed
59Rembold, CM, Foster, DB, Strauss, JD, Wingard, CJ, Eyk, JE. cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. J Physiol 2000; 524: 865–78.CrossRefGoogle ScholarPubMed
60Woodrum, DA, Brophy, CM, Wingard, CJ, Beall, A, Rasmussen, H. Phosphorylation events associated with cyclic nucleotide-dependent inhibition of smooth muscle contraction. Am J Physiol Heart Circ Physiol 1999; 277: H931–39.CrossRefGoogle ScholarPubMed
61Bitar, KN. Function of gastrointestinal smooth muscle: from signaling to contractile proteins. Am J Med 2003; 115: 15S23S.CrossRefGoogle ScholarPubMed
62Somlyo, AP. Ultrastructure of vascular smooth muscle. In: Bethesda, MD, (ed). Handbook of Physiology. The Cardiovascular System. Vascular Smooth Muscle: Am Physiol Soc; 1980; 33–67.CrossRefGoogle Scholar
63Somlyo, AP, Somlyo, AV, Kitazawa, T, Bond, M, Shuman, H, Kowarski, D. Ultrastructure, function and composition of smooth muscle. Ann Biomed Eng 1983; 11: 579–88.CrossRefGoogle ScholarPubMed
64Needham, DM, Williams, JM. Proteins of the Uterine Contractile Mechanism. Biochem J 1963; 89: 552–61.CrossRefGoogle ScholarPubMed
65Cavaille, F, Leger, JJ. Characterization and comparison of the contractile proteins from human gravid and non-gravid myometrium. Gynecol Obstet Invest 1983; 16: 341–53.CrossRefGoogle ScholarPubMed
66Cavaille, F, Janmot, C, Ropert, S, d'Albis, A. Isoforms of myosin and actin in human, monkey and rat myometrium. Comparison of pregnant and non-pregnant uterus proteins. Eur J Biochem 1986; 160: 507–13.CrossRefGoogle ScholarPubMed
67Vandekerckhove, J, Weber, K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal peptide. J Mol Biol 1978; 126: 783802.CrossRefGoogle Scholar
68Vandekerckhove, J, Weber, K. Actin typing on total cellular extracts: a highly sensitive protein-chemical procedure able to distinguish different actins. Eur J Biochem 1981; 113: 595603.CrossRefGoogle ScholarPubMed
69North, AJ, Gimona, M, Lando, Z, Small, JV. Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci 1994; 107: 445–55.CrossRefGoogle ScholarPubMed
70Word, RA, Stull, JT, Casey, ML, Kamm, KE. Contractile elements and myosin light chain phosphorylation in myometrial tissue from nonpregnant and pregnant women. J Clin Invest 1993; 92: 2937.CrossRefGoogle ScholarPubMed
71Shynlova, O, Tsui, P, Dorogin, A, Chow, M, Lye, SJ. Expression and localization of alpha-smooth muscle and gamma-actins in the pregnant rat myometrium. Biol Reprod 2005; 73: 773–80.CrossRefGoogle ScholarPubMed
72Huang, R, Li, L, Guo, H, Wang, CL. Caldesmon binding to actin is regulated by calmodulin and phosphorylation via different mechanisms. Biochemistry 2003; 42: 2513–523.CrossRefGoogle ScholarPubMed
73Dabrowska, R, Goch, A, Galazkiewicz, B, Osinska, H. The influence of caldesmon on ATPase activity of the skeletal muscle actomyosin and bundling of actin filaments. Biochim Biophys Acta 1985; 842:7075.CrossRefGoogle ScholarPubMed
74Borovikov Iu, S, Novak, E, Dabrowska, R. [The effect of caldesmon and tropomyosin from smooth muscles on the motility of myosin head in ghost muscle fibers]. Biokhimiia 1990; 55: 1498–502.Google ScholarPubMed
75Alahyan, M, Webb, MR, Marston, SB, El-Mezgueldi, M. The mechanism of smooth muscle caldesmon-tropomyosin inhibition of the elementary steps of the actomyosin ATPase. J Biol Chem 2006; 281: 19433–448.CrossRefGoogle ScholarPubMed
76Graceffa, P, Mazurkie, A. Effect of caldesmon on the position and myosin-induced movement of smooth muscle tropomyosin bound to actin. J Biol Chem 2005; 280: 4135–143.CrossRefGoogle ScholarPubMed
77Graceffa, P, Jancso, A. Disulfide cross-linking of caldesmon to actin. J Biol Chem 1991; 266: 20305–310.CrossRefGoogle ScholarPubMed
78Tanaka, T, Ohta, H, Kanda, K, Hidaka, H, Sobue, K. Phosphorylation of high-Mr caldesmon by protein kinase C modulates the regulatory function of this protein on the interaction between actin and myosin. Eur J Biochem 1990; 188: 495500.CrossRefGoogle ScholarPubMed
79Foster, DB, Shen, LH, Kelly, J, Thibault, P, Van Eyk, JE, Mak, AS. Phosphorylation of caldesmon by p21-activated kinase. Implications for the Ca(2+) sensitivity of smooth muscle contraction. J Biol Chem 2000; 275: 1959–65.CrossRefGoogle ScholarPubMed
80Cornwell, TL, Li, J, Sellak, H, Miller, RT, Word, RA. Reorganization of myofilament proteins and decreased cGMP-dependent protein kinase in the human uterus during pregnancy. J Clin Endocrinol Metab 2001; 86: 3981–988.CrossRefGoogle ScholarPubMed
81Riley, M, Baker, PN, Tribe, RM, Taggart, MJ. Expression of scaffolding, signalling and contractile-filament proteins in human myometria: effects of pregnancy and labour. J Cell Mol Med 2005; 9: 122–34.CrossRefGoogle ScholarPubMed
82Li, Y, Je, HD, Malek, S, Morgan, KG. ERK1/2-mediated phosphorylation of myometrial caldesmon during pregnancy and labor. Am J Physiol Regul Integr Comp Physiol 2003; 284: R192199.CrossRefGoogle ScholarPubMed
83Lehrer, SS. The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J Muscle Res Cell Motil 1994; 15: 232–36.CrossRefGoogle ScholarPubMed
84Li, MX, Wang, X, Sykes, BD. Structural based insights into the role of troponin in cardiac muscle pathophysiology. J Muscle Res Cell Motil 2004; 25: 559–79.CrossRefGoogle ScholarPubMed
85Graceffa, P. Movement of smooth muscle tropomyosin by myosin heads. Biochemistry 1999; 38: 11984–992.CrossRefGoogle ScholarPubMed
86Graceffa, P. Phosphorylation of smooth muscle myosin heads regulates the head-induced movement of tropomyosin. J Biol Chem 2000; 275: 17143–148.CrossRefGoogle ScholarPubMed
87Jaisle, F.[Tropomyosin in human myometrium.]. Arch Gynakol 1960; 194: 277–86.CrossRefGoogle ScholarPubMed
88Lees-Miller, JP, Helfman, DM. The molecular basis for tropomyosin isoform diversity. Bioessays 1991; 13: 429–37.CrossRefGoogle ScholarPubMed
89Gunning, PW, Schevzov, G, Kee, AJ, Hardeman, EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15: 333–41.CrossRefGoogle ScholarPubMed
90Rehman, KS, Yin, S, Mayhew, BA, Word, RA, Rainey, WE. Human myometrial adaptation to pregnancy: cDNA microarray gene expression profiling of myometrium from non-pregnant and pregnant women. Mol Hum Reprod 2003; 9: 681700.CrossRefGoogle ScholarPubMed
91Haeberle, JR. Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitromotility assay. J Biol Chem 1994; 269: 12424–431.CrossRefGoogle Scholar
92Winder, SJ, Walsh, MP. Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem 1990; 265: 10148–155.CrossRefGoogle ScholarPubMed
93Winder, S, Walsh, M. Inhibition of the actomyosin MgATPase by chicken gizzard calponin. Prog Clin Biol Res 1990; 327: 141–48.Google ScholarPubMed
94Mabuchi, K, Li, B, Ip, W, Tao, T. Association of calponin with desmin intermediate filaments. J Biol Chem 1997; 272: 22662–666.CrossRefGoogle ScholarPubMed
95Steinert, PM, Roop, DR. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 1988; 57: 593625.CrossRefGoogle ScholarPubMed
96Osborn, M, Weber, K. Cytoplasmic intermediate filament proteins and the nuclear lamins A, B and C share the IFA epitope. Exp Cell Res 1987; 170: 195203.CrossRefGoogle Scholar
97Leoni, P, Carli, F, Halliday, D. Intermediate filaments in smooth muscle from pregnant and non-pregnant human uterus. Biochem J 1990; 269: 3134.CrossRefGoogle ScholarPubMed
98Yu, JT, Lopez Bernal, A. The cytoskeleton of human myometrial cells. Reprod Fertil 1998; 112: 185–98.CrossRefGoogle ScholarPubMed
99Geiger, B, Volk, T, Volberg, T, Bendori, R. Molecular interactions in adherens-type contacts. J Cell Sci Suppl 1987; 8: 251–72.CrossRefGoogle ScholarPubMed
100Murphy, RA. Filament organization and contractile function in vertebrate smooth muscle. Annu Rev Physiol 1979; 41: 737–48.CrossRefGoogle ScholarPubMed
101Somlyo, AP, Devine, CE, Somlyo, AV, Rice, RV. Filament organization in vertebrate smooth muscle. Philos Trans R Soc Lond B Biol Sci 1973; 265: 223–29.Google ScholarPubMed
102Pavalko, FM, LaRoche, SM. Activation of human neutrophils induces an interaction between the integrin beta 2-subunit (CD18) and the actin binding protein alpha-actinin. J Immunol 1993; 151: 3795–807.CrossRefGoogle ScholarPubMed
103Jockusch, BM, Bubeck, P, Giehl, K, Kroemker, M, Moschner, J, Rothkegel, M, et al. The molecular architecture of focal adhesions. Annu Rev Cell Dev Biol 1995; 11: 379416.CrossRefGoogle ScholarPubMed
104Taylor, CV, Letarte, M, Lye, SJ. The expression of integrins and cadherins in normal human uterus and uterine leiomyomas. Am J Obstet Gynecol 1996; 175: 411–19.CrossRefGoogle ScholarPubMed
105Williams, SJ, White, BG, MacPhee, DJ. Expression of alpha5 integrin (Itga5) is elevated in the rat myometrium during late pregnancy and labor: implications for development of a mechanical syncytium. Biol Reprod 2005; 72: 1114–124.CrossRefGoogle ScholarPubMed
106Macphee, DJ, Lye, SJ. Focal adhesion signaling in the rat myometrium is abruptly terminated with the onset of labor. Endocrinology 2000; 141: 274–83.CrossRefGoogle ScholarPubMed
107Gunst, SJ. Actions by actin: reciprocal regulation of cortactin activity by tyrosine kinases and F-actin. Biochem J 2004; 380: e7e8.CrossRefGoogle ScholarPubMed
108Tardif, M, Huang, S, Redmond, T, Safer, D, Pring, M, Zigmond, SH. Actin polymerization induction by GTP gamma S in permeabilized neutrophils is induced and maintained by free barbed ends. J Biol Chem 1995; 270: 2807528083.CrossRefGoogle Scholar
109May, RC. The Arp2/3 complex:a central regulator of the actin cytoskeleton. Cell Mol Life Sci 2001; 58: 1607–26.CrossRefGoogle ScholarPubMed
110Hall, A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–14.CrossRefGoogle ScholarPubMed
111Gogarten, W, Emala, CW, Lindeman, KS, Hirshman, CA. Oxytocin and lysophophadtidic acid induce stress fiber formation in human myometrial cells via a pathway involving Rho-Kinase. Biol Reprod 2001; 65: 401–06.CrossRefGoogle Scholar
112Gerthoffer, WT, Gunst, SJ. Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol 2001; 91: 963–72.CrossRefGoogle ScholarPubMed
113Benndorf, R, Hayess, K, Ryazantsev, S, Wieske, M, Behlke, J, Lutsch, G. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 1994; 269: 20780–784.CrossRefGoogle ScholarPubMed
114Lavoie, JN, Hickey, E, Weber, LA, Landry, J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 1993; 268: 24210–214.CrossRefGoogle ScholarPubMed
115Bitar, KN, Kaminski, MS, Hailat, N, Cease, KB, Strahler, JR. Hsp27 is a mediator of sustained smooth muscle contraction in response to bombesin. Biochem Biophys Res Commun 1991; 181: 1192–200.CrossRefGoogle ScholarPubMed
116Yamboliev, IA, Hedges, JC, Mutnick, JL, Adam, LP, Gerthoffer, WT. Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol 2000; 278: H1899907.CrossRefGoogle ScholarPubMed
117Meloche, S, Landry, J, Huot, J, Houle, F, Marceau, F, Giasson, E. p38 MAP kinase pathway regulates angiotensin II-induced contraction of rat vascular smooth muscle. Am J Physiol Heart Circ Physiol 2000; 279: H741–51.CrossRefGoogle ScholarPubMed
118White, BG, Williams, SJ, Highmore, K, Macphee, DJ. Small heat shock protein 27 (Hsp27) expression is highly induced in rat myometrium during late pregnancy and labour. Reproduction 2005; 129: 115126.CrossRefGoogle ScholarPubMed
119MacIntyre, DA, Tyson, EK, Read, M, Smith, R, Yeo, G, Kwek, K, et al. Contraction in human myometrium is associated with changes in small heat shock proteins. Endocrinology 2007; (In press).CrossRefGoogle Scholar
120Venter, JC, Adams, MD, Myers, EW, Li, PW, Mural, RJ, Sutton, GG, et al. The sequence of the human genome. Science 2001; 291: 1304–51.CrossRefGoogle ScholarPubMed
121Azad, NS, Rasool, N, Annunziata, CM, Minasian, L, Whitely, G, Kohn, EC. Proteomics in clinical trials and practice: present uses and future promise. Mol Cell Proteomics 2006; 10: 1819–29 Epub.CrossRefGoogle Scholar
122Aguan, K, Carvajal, JA, Thompson, LP, Weiner, CP. Application of a functional genomics approach to identify differentially expressed genes in human myometrium during pregnancy and labour. Mol Hum Reprod 2000; 6: 1141–145.CrossRefGoogle ScholarPubMed
123Bailey, J, Europe-Finner, GN. Identification of human myometrial target genes of the c-Jun NH2-terminal kinase (JNK) pathway: the role of activating transcription factor 2 (ATF2) and a novel spliced isoform ATF2-small. J Mol Endocrinol 2005; 34: 1935.CrossRefGoogle Scholar
124Bailey, J, Tyson-Capper, AJ, Gilmore, K, Robson, SC, Europe-Finner, GN. Identification of human myometrial target genes of the cAMP pathway: the role of cAMP-response element binding (CREB) and modulator (CREMalpha and CREMtau2alpha) proteins. J Mol Endocrinol 2005; 34: 117.CrossRefGoogle ScholarPubMed
125Bukowski, R, Hankins, GD, Saade, GR, Anderson, GD, Thornton, S. Labor-associated gene expression in the human uterine fundus, lower segment, and cervix. PLoS Med 2006; 3: e169.CrossRefGoogle ScholarPubMed
126Chan, EC, Fraser, S, Yin, S, Yeo, G, Kwek, K, Fairclough, RJ, et al. Human myometrial genes are differentially expressed in labor: a suppression subtractive hybridization study. J Clin Endocrinol Metab 2002; 87: 2435–41.CrossRefGoogle ScholarPubMed
127Havelock, JC, Keller, P, Muleba, N, Mayhew, BA, Casey, BM, Rainey, WE, et al. Human myometrial gene expression before and during parturition. Biol Reprod 2005; 72: 707–19.CrossRefGoogle ScholarPubMed
128Marvin, KW, Keelan, JA, Eykholt, RL, Sato, TA, Mitchell, MD. Use of cDNA arrays to generate differential expression profiles for inflammatory genes in human gestational membranes delivered at term and preterm. Mol Hum Reprod 2002; 8: 399408.CrossRefGoogle ScholarPubMed
129Salomonis, N, Cotte, N, Zambon, AC, Pollard, KS, Vranizan, K, Doniger, SW, et al. Identifying genetic networks underlying myometrial transition to labor. Genome Biol 2005; 6: R12.CrossRefGoogle ScholarPubMed
130Gygi, SP, Rochon, Y, Franza, BR, Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19: 1720–30.CrossRefGoogle ScholarPubMed
131Chen, G, Gharib, TG, Huang, CC, Taylor, JM, Misek, DE, Kardia, SL, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002; 1: 304–13.CrossRefGoogle ScholarPubMed
132Vuadens, F, Benay, C, Crettaz, D, Gallot, D, Sapin, V, Schneider, P, et al. Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach. Proteomics 2003; 3: 1521–525.CrossRefGoogle ScholarPubMed
133Vascotto, C, Salzano, AM, D'Ambrosio, C, Fruscalzo, A, Marchesoni, D, Loreto, CO, et al. Oxidized Transthyretin in Amniotic Fluid as an Early Marker of Preeclampsia. J Proteome Res 2007; 6: 160–70.CrossRefGoogle ScholarPubMed
134Tsangaris, GT, Karamessinis, P, Kolialexi, A, Garbis, SD, Antsaklis, A, Mavrou, A, et al. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 2006; 6: 4410–419.CrossRefGoogle ScholarPubMed
135Buhimschi, IA, Buhimschi, CS, Christner, R, Norwitz, E, Weiner, CP. Proteomic profiling and intra-amniotic infection. JAMA 2004; 292: 2338; author reply 2338–9.Google ScholarPubMed
136Buhimschi, IA, Buhimschi, CS, Christner, R, Weiner, CP. Proteomics technology for the accurate diagnosis of inflammation in twin pregnancies. BJOG 2005; 112: 250–55.CrossRefGoogle Scholar
137Buhimschi, IA, Christner, R, Buhimschi, CS. Proteomic biomarker analysis of amniotic fluid for identification of intra-amniotic inflammation. BJOG 2005; 112: 173–81.CrossRefGoogle ScholarPubMed
138Gravett, MG, Novy, MJ, Rosenfeld, RG, Reddy, AP, Jacob, T, Turner, M, et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA 2004; 292: 462–69.CrossRefGoogle ScholarPubMed
139Tsangaris, GT, Kolialexi, A, Karamessinis, PM, Anagnostopoulos, AK, Antsaklis, A, Fountoulakis, M, et al. The normal human amniotic fluid supernatant proteome. In Vivo 2006; 20: 479–90.Google ScholarPubMed
140Phillippe, M, Harrison, HH. Gestational modulation of myometrial proteins in the timed-pregnant Sprague-Dawley rat. Life Sci 1992; 50: 1189–200.CrossRefGoogle ScholarPubMed