Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T19:24:09.306Z Has data issue: false hasContentIssue false

Fluorescence in situ hybridization (FISH) in prenatal diagnosis

Published online by Cambridge University Press:  15 January 2010

Yuval Yaron*
Affiliation:
Division of Reproductive Genetics, Departments of Obstetrics & Gynecology, Molecular Medicine & Genetics and Pathology, Hutzel Hospital/Wayne State University, Detroit, Michigan, United States of America
Salah Ebrahim
Affiliation:
Division of Reproductive Genetics, Departments of Obstetrics & Gynecology, Molecular Medicine & Genetics and Pathology, Hutzel Hospital/Wayne State University, Detroit, Michigan, United States of America
Ralph L Kramer
Affiliation:
Division of Reproductive Genetics, Departments of Obstetrics & Gynecology, Molecular Medicine & Genetics and Pathology, Hutzel Hospital/Wayne State University, Detroit, Michigan, United States of America
Mark P Johnson
Affiliation:
Division of Reproductive Genetics, Departments of Obstetrics & Gynecology, Molecular Medicine & Genetics and Pathology, Hutzel Hospital/Wayne State University, Detroit, Michigan, United States of America
Mark I Evans
Affiliation:
Division of Reproductive Genetics, Departments of Obstetrics & Gynecology, Molecular Medicine & Genetics and Pathology, Hutzel Hospital/Wayne State University, Detroit, Michigan, United States of America
*
Dr Yuval Yaron, Division of Reproductive Genetics, Department of Obstetrics & Gynecology, Molecular Medicine & Genetics and Pathology, Hutzel Hospital/Wayne State University, 4707 St Antoine Boulevard, Detroit, Michigan 48201, United States of America.

Extract

Currently, the gold standard for prenatal detection of chromosomal abnormalities relies on traditional cytogenetic analysis of banded meta-phase chromosome spreads of cultured cells obtained by amniocentesis, chorionic villous sampling, or fetal blood sampling. Using this technique, a wide range of chromosomal aneu-ploidies and structural aberrations such as translocations, inversions and deletions may be diagnosed with a high degree of accuracy. Unfortunately, this technique has several disadvantages: it is labour intensive, requiring highly trained analysts, and most importantly, it can only be applied to cells undergoing mitosis. Hence the.need for cell culture which may require several days, such that the complete analysis is usually obtained after 7 to 14 days. Thus, there is a need to develop faster methods for prenatal chromosomal analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ferguson-Smith, Yates J. Maternal age-specific rates for chromosomal aberrations and factors influencing them: report of a collaborative European study on 52,965 amniocenteses. Prenat Diagn 1984; 4: 544.CrossRefGoogle Scholar
2Hook, EB, Cross, PK, Jackson, L, Pergament, E, Brambati, B. Maternal age-specific rates of 47 + 21 and other cytogenetic abnormalities diagnosed in the first trimester of pregnancy in chorionic villous biopsy specimens: comparison with rates expected from observations at amniocentesis. Am J Hum Genet 1988; 42: 797807.Google Scholar
3Evans, MI, Klinger, KW, Isada, NB, Shook, D, Holzgreve, W, McGuire, N et al. Rapid prenatal diagnosis by fluorescent in situ hybridization of chorionic villi: an adjunct to long-term culture and karyotype. Am J Obstet Gynecol 1992; 167: 1522–25.CrossRefGoogle ScholarPubMed
4Ward, BE, Gersen, SL, Carelli, MP, McGuire, NM, Dackoski, WR, Weinstein, M et al. Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescent in situ hybridization: clinical experience with 4500 specimens. Am J Hum Genet 1993; 52: 854–65.Google Scholar
5Harper, ME, Saunders, GF. Localization of single-copy DNA sequences of G-banded human chromosomes by in situ hybridization. Chromosoma 1981; 83: 431–39.CrossRefGoogle ScholarPubMed
6Gerhard, DS, Kawasaki, ES, Bancroft, FC, Szabo, P. Localization of a unique gene by direct hybridization in situ. Proc Nati Acad Sci USA 1981; 78: 3755–759.CrossRefGoogle ScholarPubMed
7Langer-Safer, PR, Levine, M, Ward, DC. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Nati Acad Sci USA 1982; 79: 4381–385.CrossRefGoogle ScholarPubMed
8Shroyer, KR, Nakane, PK. Use of DNP-labelled cDNA for in situ hybridization. J Cell Biol 1983; 97: 377a..Google Scholar
9Manuelidis, L. Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet 1985; 71: 288–93.CrossRefGoogle ScholarPubMed
10Pinkel, D, Straume, T, Grey, JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 1986: 83: 2934–38.CrossRefGoogle ScholarPubMed
11Lebo, RV, Flandermeyer, RR, Diukman, R, Lynch, ED, Lepercq, JA, Golbus, MS. Prenatal diagnosis with repetitive in situ hybridization probes. Am J Med Genet 1992; 43: 848–54.CrossRefGoogle ScholarPubMed
12Devilee, P, Cremer, T, Slagboom, P, Bakker, E, School, H, Hager, H et al. Two subsets of human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13, 18 and 21. Cytogenet Cell Genet 1986; 41: 193201.CrossRefGoogle ScholarPubMed
13Kuo, WL, Tenjin, H, Segraves, R, Pinkel, D, Golbus, MS, Gray, J. Detection of aneuploidy involving chromosomes 13, 18 or 21 by fluorescent in situ hybridization (FISH) to interphase and metaphase amniocytes. Am J Hum Genet 1991; 49: 112–19.Google ScholarPubMed
14Burns, J, Chan, VTW, Jonasson, JA, Flemig, KA, Taylor, S, McGee, JOD. Sensitive system for visualizing biotinylated DNA probes hybridized in situ: rapid sex determination of intact cells. J Clin Pathol 1985; 38: 1085–92.CrossRefGoogle ScholarPubMed
15Wessman, M, Ruutu, T, Violin, L, Knuutila, S. In situ hybridization using a Y-specific probe - a sensitive method for distinguishing residual male recipient cells from female donors in bone marrow transplantation. Bone Marrow Transplan 1989; 4: 283–86.Google ScholarPubMed
16Nederlof, PM, van der Flier, J, Raap, AK., Tanke, HJ, van der Ploeg, M. Multiple fluorescence in situ hybridization. Cytometry 1990; 11: 126–31.CrossRefGoogle ScholarPubMed
17Cremer, T, Landegent, J, Bruckner, A, Scholl, HP, Schadin, M, Hager, HD et al. Detection of chromosome aberrations in the human interphase nucleus by visualization of target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L 1.84. Hum Genet 1986; 74: 346–52.CrossRefGoogle Scholar
18Lucas, JN, Tenijin, T, Straumes, T, Pinkel, D, Moore, D, Litt, M, Gray, JW. Rapid human chromosome aberration analysis using fluorescent in situ hybridization. Int J Radiat Biol 1989; 56: 3544.CrossRefGoogle Scholar
19Choo, KH, Filby, G, Earle, E, Brown, R. Isolation of human chromosome 21 sequences and their application to in situ hybridization. Hum Genet 1988; 81: 4953.CrossRefGoogle ScholarPubMed
20Lichter, P, Cremer, T, Borden, J, Manuelidis, L, Ward, D. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 1988; 80: 224–34.CrossRefGoogle ScholarPubMed
21Nederlof, PM, Robinson, D, Abuknesha, R, Wiegant, J, Hopman, AH, Tanke, HJ, Raap, AK. Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 1989; 10: 2027.CrossRefGoogle ScholarPubMed
22Koch, JE, Kølvraa, S, Petersen, KB, Gregersen, N, Bolund, L. Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma 1989; 98: 259–65.CrossRefGoogle ScholarPubMed
23Hindkjaer, J, Brandt, CA, Koch, J, Lund, TB, Kølvraa, S, Bolund, L. Simultaneous detection of centromere-specific probes and chromosome painting libraries by a combination of primed in situ labelling and chromosome painting (PRINS-painting). Chromosome Research 1995; 3: 4144.CrossRefGoogle ScholarPubMed
24Wauters, JG, Bossuyt, PJ, Roeien, L, van Roy, B, Dumon, J. Application of fluorescent in situ hybridization for early prenatal diagnosis of partial trisomy 6p/monosomy 6q due to a familial pericentric inversion. Clin Genet 1993; 44: 262–69.CrossRefGoogle ScholarPubMed
25Smit, Vthbm, Wessels, JW, Mollevanger, P, Schrier, PI, Raap, AK, Beverstock, GC et al. Combined GTG-banding and nonradioactive in situ hybridization improves characterization of complex karyotypes. Cytogenet Cell Genet 1990; 54: 2023.CrossRefGoogle ScholarPubMed
26Sullivan, BA, Leana-Cox, J, Schwartz, S. Clarification of subtle reciprocal rearrangements using fluorescent in situ hybridization. Am J Med Genet 1993; 47: 223–30.CrossRefGoogle Scholar
27Toth-Fejel, S, Magenis, RE, Leff, S, Brown, MG, Comegys, B, Lawce, H et al. Prenatal diagnosis of chromosome 15 abnormalities in the Prader Willi/Angelman syndrome region by traditional and molecular cytogenetics. Am J Med Genet 1995; 55: 444–52.CrossRefGoogle ScholarPubMed
28Callen, DF, Ringenbergs, ML, Fowler, JCS, Freemantle, CJ, Haan, EA. Small marker chromosomes in man: origin from pericentric heterochromatin of chromosomes 1,9 and 16. J Med Genet 1990; 27: 155–59.CrossRefGoogle ScholarPubMed
29Doneda, L, Dalpra, L, Tibiletti, MG, Larizza, L. Prenatal diagnosis of an extranumerary i(22p) with normal phenotype. Annales de Genetique 1993; 36: 154–58.Google ScholarPubMed
30Ebrahim, SAD, Mohamed, AN, Krivchenia, EL, Treadwell, MC, Johnson, MP, Evans, MI. Prenatal characterization of supernumerary ring chromosome by fluorescence in situ hybridization (FISH). Am J Hum Genet 1995; 57: A112.Google Scholar
31Cremer, T, Cremer, C, Baumann, H, Luedtke, EK, Sperling, K, Teuber, V et al. Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 1982; 60: 4656.CrossRefGoogle ScholarPubMed
32Hens, L.Baumann, H, Cremer, T, Sutter, A, Cornells, JJ, Cremer, C. Immunocytochemical localization of chromatin regions UV-microirradiated in S-phase or anaphase: evidence for a territorial organization of chromosomes during the cell cycle of Chinese hamster cells. Exp Cel Res 1983; 149 257–69.CrossRefGoogle ScholarPubMed
33Davies, AF, Barber, L, Murer-Orlando, M, Bobrow, M, Adinolfi, M. An improved method for the detection of trisomy 21 in uncultured amniocytes by fluorescent in situ hybridization. Anal NY Acad Sci 1994; 731 6772.CrossRefGoogle Scholar
34Schwartz, S. Efficacy and applicability of interphase fluorescence in situ hybridization for prenatal diagnosis. Am J Hum Genet 1993; 452: 851.Google Scholar
35Philip, J, Bryndorf, T, Christensen, B. Prenatal aneuploidy detection in interphase cells by fluorescence in situ hybridization (FISH). Prenat Diagn 1994; 14: 1203–15.CrossRefGoogle ScholarPubMed
36Evans, MI, Ebrahim, SA, Berry, SM, Holzgreve, W, Isada, NB, Quintero, RA et al. Fluorescent in situ hybridization utilization for high risk prenatal diagnosis: a trade-off among speed, expense and inherent limitations of chromosome specific probes. Am J Obstet Gynecol 1994; 171: 1055–57.CrossRefGoogle ScholarPubMed
37Clark, BA, Kennedy, K, Olson, S. The need to reevaluate trisomy screening for advanced maternal age in prenatal diagnosis. Am J Obstet Gynecol 1993; 163: 812–16.CrossRefGoogle Scholar
38Simpson, JL. Preimplantation genetics and recovery of fetal cells from maternal blood. Curr Opin Obstet Gynecol. 1992; 4: 295301.CrossRefGoogle ScholarPubMed
39Ganshirt-Ahlert, D, Borjesson-Stoll, R, Burschyk, M, Dohr, A, Garritsen, HS, Helmer, E et al. Detection of fetal trisomies 21 and 18 from maternal blood using triple gradient and magnetic cell sorting. Am J Reprod Immunol 1993; 30: 194201.CrossRefGoogle ScholarPubMed
40Handyside, AH, Pattinson, JK, Penketh, RJ, Delhanty, JD, Winston, RM, Tuddenham, EG. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet 1989; 1: 347–49.CrossRefGoogle ScholarPubMed
41Munne, S, Weier, HU, Stein, J, Grifo, J, Cohen, J. A fast and efficient method for simultaneous X and Y in situ hybridization of human blastomeres. J Assist Reprod Genet 1993; 10: 8290.CrossRefGoogle ScholarPubMed
42Munne, S, Tang, YX, Grifo, J, Rosenwaks, Z, Cohen, J. Sex determination of human embryos using the polymerase chain reaction and confirmation by fluorescence in situ hybridization. Fertil Steril 1994; 61: 111117.CrossRefGoogle ScholarPubMed
43Coonen, E, Harper, JC, Ramaekers, FC, Delhanty, JD, Hopman, AH, Geraedts, JP et al. Presence of chromosomal mosaicism in abnormal preimplantation embryos detected by fluorescence in situ hybridization. Hum Genet 1994; 94: 609–15.CrossRefGoogle Scholar
44Harper, JC, Coonen, E, Handyside, AH, Winston, RML, Hopman, AHN, Delhanty, JDA. Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat Diagn 1995; 15: 4149.CrossRefGoogle ScholarPubMed
45Munne, S, Weier, HU, Grifo, J, Cohen, J. Chromosome mosaicism in human embryos. Biol Reprod 1994; 51: 373–79.CrossRefGoogle ScholarPubMed
46Munne, S, Grifo, J, Cohen, J, Weier, HU. Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study. Am J Hum Genet 1994; 55: 150–59.Google ScholarPubMed
47Munne, S, Lee, A, Rosenwaks, Z, Grifo, J, Cohen, J. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod 1993; 8: 2185–91.CrossRefGoogle ScholarPubMed
48Wolstenholme, J. An audit of trisomy 16 in man. Prenat Diagn 1995; 15: 109–21.CrossRefGoogle ScholarPubMed