Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T15:23:10.873Z Has data issue: false hasContentIssue false

FETAL ANAESTHESIA: IS THIS NECESSARY FOR FETOSCOPIC THERAPY?

Published online by Cambridge University Press:  12 January 2010

MARC VAN DE VELDE*
Affiliation:
Department of Anaesthesiology, University Hospitals Gasthuisberg, Katholieke Universiteit Leuven, Belgium.
FREDERIK DE BUCK
Affiliation:
Department of Anaesthesiology, University Hospitals Gasthuisberg, Katholieke Universiteit Leuven, Belgium.
TIM VAN MIEGHEM
Affiliation:
Department of Obstetrics and Gynaecology, University Hospitals Gasthuisberg, Katholieke Universiteit Leuven, Belgium.
LEONARDO GUCCIARDO
Affiliation:
Department of Obstetrics and Gynaecology, University Hospitals Gasthuisberg, Katholieke Universiteit Leuven, Belgium.
PHILIP DE KONINCK
Affiliation:
Department of Obstetrics and Gynaecology, University Hospitals Gasthuisberg, Katholieke Universiteit Leuven, Belgium.
JAN DEPREST
Affiliation:
Department of Obstetrics and Gynaecology, University Hospitals Gasthuisberg, Katholieke Universiteit Leuven, Belgium.
*
Marc Van De Velde, Director Obstetric Anaesthesia and Extra Muros Anaesthesia, Associate Professor of Anaesthesia, Department of Anaesthesiology, University Hospitals Gasthuisberg, Herestraat 49, B – 3000 Leuven, Belgium. Email: [email protected]

Extract

Since Robinson and Gregory demonstrated the need to administer analgesia to preterm infants and the safety of such anaesthestic techniques in this specific patient population, pain in neonates and adequate analgesia have drawn more and more attention. Thanks to the outstanding work by Anand et al, it became increasingly clear that premature infants experience stress during invasive procedures and that as a consequence long-term neurodevelopmental status may be affected. Fetuses also demonstrate a stress response. Fetal analgesia can be administered efficiently, eliminating the fetal stress response. However, it remains unclear whether this results in improved neurodevelopment and improved long term outcome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Robinson, S, Gregory, GA. Fentanyl-air-oxygen anaesthesia for ligation of patent ductus arteriosus in preterm infants. Anesth Analg 1981; 60: 331–34CrossRefGoogle ScholarPubMed
2. Anand, KJ, Hickey, PR. Pain and its effects in the human neonate and fetus. N Engl J Med 1987; 317: 1321–29CrossRefGoogle ScholarPubMed
3. Anand, KJ, Sippell, WG, Aynsley-Green, A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet 1987; 10: 6266CrossRefGoogle Scholar
4. Anand, KJ, Barton, BA, McIntosh, N, Lagercrantz, H, Pelausa, E, Young, TE et al. Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial. Neonatal Outcome and Prolonged Analgesia in Neonates. Arch Pediatr Adolesc Med 1999; 153: 331–38CrossRefGoogle ScholarPubMed
5. Giannakoulopoulos, X, Sepulveda, W, Kourtis, P, Glover, V, Fisk, NM. Fetal plasma cortisol and beta-endorphin response to intrauterine needling. Lancet 1994; 344: 7781CrossRefGoogle ScholarPubMed
6. Fisk, NM, Gitau, R, Teixeira, JM, Giannakoulopoulos, X, Cameron, AD, Glover, VA. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology 2001; 95: 828–35CrossRefGoogle ScholarPubMed
7. Deprest, JA, Done, E, Van Mieghem, T, Gucciardo, L. Fetal surgery for anesthesiologists. Current Opin Anaesthesiol 2008; 21: 298307CrossRefGoogle ScholarPubMed
8. Gallot, D, Boda, C, Ughetto, S, Perthus, I, Robert-Gnansia, E, Francannet, C et al. Prenatal detection and outcome of congenital diaphragmatic hernia: a French registry-based study. Ultrasound Obstet Gynecol 2007; 29: 276–83CrossRefGoogle ScholarPubMed
9. Javid, P, Jaksic, T, Skarsgard, E, Lee, S. Canadian Neonatal Network. Survival rate in congenital diaphragmatic hernia: the experience of the Canadian Neonatal Network. J Pediatr Surg 2004; 39: 657–60.CrossRefGoogle Scholar
10Hedrick, HL, Danzer, E, Merchant, A, Bebbington, MW, Zhao, H, Flake, AW et al. Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol 2007; 197: 422.e14.CrossRefGoogle ScholarPubMed
11Deprest, J, Gratacos, E, Nicolaides, KH, FETO. Task Group Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet Gynecol 2004; 24: 121–26.CrossRefGoogle ScholarPubMed
12Harrison, MR, Keller, RL, Hawgood, SB, Kitterman, JA, Sandberg, PL, Farmer, DL et al. A Randomized Trial of fetal endoscopic tracheal occlusion for severe fetal congential diaphragmatic hernia. N Engl J Med 2003; 349: 1916–924.CrossRefGoogle Scholar
13Jani, J, Nicolaides, KH, Gratacos, E, Vandecruys, H, Deprest, JA. FETO, Task Group. Fetal lung-to-head ratio in the prediction of survival in severe left-sided diaphragmatic hernia treated by fetal endoscopic tracheal occlusion (FETO). Am J Obstet Gynecol 2006; 195: 1646–650.CrossRefGoogle ScholarPubMed
14Lewi, L, Jani, J, Deprest, J. Invasive interventions in complicated multiple pregnancies. Clin Ob Gyn N Am 2005; 32: 105–26.CrossRefGoogle ScholarPubMed
15Lewi, L, Jani, J, Cannie, M, Robyr, R, Ville, Y, Hecher, K et al. Intertwin anastomoses in monochorionic placentas after fetoscopic laser coagulation for severe twin-to-twin transfusion syndrome: is there more than meets the eye? Am J Obstet Gynecol 2006; 194: 790–95.CrossRefGoogle Scholar
16Senat, MV, Deprest, J, Boulvain, M, Paupe, A, Winer, N, Ville, Y. Endoscopic laser surgery versus serial amnioreduction for twin-to-twin transfusion syndrome. N Engl J Med 2004; 351: 136–44.CrossRefGoogle ScholarPubMed
17Hecher, K, Diehl, W, Zikulnig, L, Vetter, M, Hackelöer, BJ. Endoscopic laser coagulation of placental anastomoses in 200 pregnancies with severe mid-trimester twin-to-twin transfusion syndrome. Eur J Obstet Gynecol Reprod Biol 2000; 92:135–40.CrossRefGoogle ScholarPubMed
18Huber, A, Diehl, W, Bregenzer, T, Hackelöer, BJ, Hecher, K. Stage-related outcome in twin-twin transfusion syndrome treated by fetoscopic laser coagulation. Obstet Gynecol 2006; 108: 333–37.CrossRefGoogle ScholarPubMed
19Lewi, L, Gratacos, E, Ortibus, E, Van Schoubroeck, D, Carreras, E, Higueras, T et al. Pregnancy and infant outcome of 80 consecutive cord coagulations in complicated monochorionic multiple pregnancies. Am J Obstet Gynecol 2006; 194: 782–89.CrossRefGoogle ScholarPubMed
20Gratacós, E, Carreras, E, Becker, J, Lewi, L, Enríquez, G, Perapoch, J et al. Prevalence of neurological damage in monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic umbilical artery flow. Ultrasound Obstet Gynecol 2004; 24: 159–63.CrossRefGoogle ScholarPubMed
21Gitau, R, Fisk, NM, Glover, V. Human fetal and maternal corticotrophin releasing hormone responses to acute stress. Arch Dis Child Fetal Neonatal Ed 2004; 89: F2932.CrossRefGoogle ScholarPubMed
22Smith, RP, Gitau, R, Glover, V, Fisk, NM. Pain and stress in the human fetus. Eur J Obst Gynecol Reprod Biol 2000; 92: 161–65.CrossRefGoogle ScholarPubMed
23Teixeira, JM, Glover, V, Fisk, NM. Acute cerebral redistribution in response to invasive procedures in the human fetus. Am J Obstet Gynecol 1999; 181: 1018–25.CrossRefGoogle ScholarPubMed
24Glover, V, Fisk, NM. Fetal pain: implications for research and practice. Br J Obstet Gynaecol 1999; 106: 881–86.CrossRefGoogle ScholarPubMed
25Toubas, PL, Silverman, NH, Heymann, MA, Rudolph, AM. Cardiovascular effects of acute hemorrhage in fetal lambs. Am J Physiol 1981; 240: H4548.Google ScholarPubMed
26Cohn, HE, Sacks, EJ, Heymann, MA. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 1974; 120: 817–24.CrossRefGoogle ScholarPubMed
27Richardson, B, Korkola, S, Asano, H, Challis, J, Polk, D, Fraser, M. Regional blood flow and the endocrine response to sustained hypoxemia in the preterm ovine fetus. Pediatr Res 1996; 40: 337–43.CrossRefGoogle ScholarPubMed
28Boyle, DW, Lecklitner, S, Liechty, EA. Effect of prolonged uterine blood flow reduction on fetal growth in sheep. Am J Physiol 1996; 270: R24653.Google ScholarPubMed
29Di Renzo, GC, Luzi, G, Cucchia, GC, Caserta, G, Fusaro, P, Perdikaris, A et al. The role of Doppler technology in the evaluation of fetal hypoxia. Early Hum Dev 1992; 29: 259–67.CrossRefGoogle ScholarPubMed
30Vanhatalo, S, van Nieuwenhuizen, O. Fetal pain? Brain Development 2000; 22: 145–50.CrossRefGoogle ScholarPubMed
31Valman, HB, Pearson, JF. What the fetus feels. Br Med J 1980; 280: 233–34.CrossRefGoogle ScholarPubMed
32Rizvi, T, Wadhwa, S, Bijlani, V. Development of spinal substrate for nociception. Pain [Suppl] 1987; 4: 195.CrossRefGoogle Scholar
33Okado, N. Onset of synapse formation in the human spinal cord. J Comp Neurol 1981; 201: 211–19.CrossRefGoogle ScholarPubMed
34Kostovic, I, Goldman-Rakic, PS. Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 1983; 219: 431–37.CrossRefGoogle ScholarPubMed
35Torres, F, Anderson, C. The normal EEG of the human newborn. J Clin Neurophysiol 1985; 2: 89103.CrossRefGoogle ScholarPubMed
36Ruda, MA, Ling, QD, Hohmann, AG, Peng, YB, Tachibana, T. Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 2000; 289: 628–31.CrossRefGoogle ScholarPubMed
37Johnston, CC, Stevens, BJ: Experience in a Neonatal Intensive Care Unit affects pain response. Pediatrics 1996; 98: 925–30.CrossRefGoogle Scholar
38Anand, KJ, Coskun, V, Thrivikraman, KV, Nemeroff, CB, Plotsky, PM. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 1999; 66: 627–37.CrossRefGoogle ScholarPubMed
39Porter, FL, Grunau, RE, Anand, KJ. Long-term effects of pain in infants. J Dev Behav Pediatr 1999; 20: 253–61.CrossRefGoogle ScholarPubMed
40Taddio, A, Katz, J, Ilersich, AL, Koren, G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet 1997; 349: 599603.CrossRefGoogle ScholarPubMed
41Gaiser, RR, Kurth, CD. Anesthetic considerations for fetal surgery. Semin Perinatol 1999; 23: 507–14.CrossRefGoogle ScholarPubMed
42Missant, C, Van Schoubroeck, D, Deprest, J, Devlieger, R, Teunkens, A, Van de Velde, M. Remifentanil for foetal immobilisation and maternal sedation during endoscopic treatment of twin-to-twin transfusion syndrome: a preliminary dose-finding study. Acta Anaesth Belg 2004; 55: 239–44.Google ScholarPubMed
43Van de Velde, M, Van Schoubroeck, D, Lewi, LE, Marcus, MAE, Jani, JC, Missant, C et al. Remifentanil for fetal immobilization and maternal sedation during fetoscopic surgery: a randomized, double blind comparison with diazepam. Anesth Analg 2005; 101: 251–58.CrossRefGoogle ScholarPubMed
44Van de Velde, M. Non-obstetric surgery during pregnancy. In: Chestnut, DH, Polley, LS, Tsen, LC, Wong, CA (eds). Obstetric Anaesthesia. Philadelphia, Mosby Elsevier, Fourth Edition 2009: 337–60.Google Scholar
45Chalon, J, Hillman, D, Gross, S, Eisner, M, Tang, CK, Turndorf, H et al. (Intrauterine exposure to halothane increases murine postnatal autotolerance to halothane and reduces brain weight. Anesth Analg 1983; 62: 565–67.CrossRefGoogle ScholarPubMed
46Armitage, SG. The effects of barbiturates on the behavior of rat offspring as measured in learning and reasoning situations. J Comp Physiol Psychol 1952; 45: 146–52.CrossRefGoogle ScholarPubMed
47Chalon, J, Walpert, L, Ramanathan, S, Eisner, M, Tang, CK, Katz, R et al. Meperidine-promethazine combination and learning function of mice and of their progeny. Can Anaesth Soc J 1982; 29: 612–16.CrossRefGoogle ScholarPubMed
48Hoffeld, DR, McNew, J, Webster, RL. Effect of tranquilizing drugs during pregnancy on activity of offspring. Nature 1968; 218: 357–58.CrossRefGoogle ScholarPubMed
49Jevtovic-Todorovic, V, Hartman, RE, Izumi, Y, Benshoff, ND, Dikranian, K, Zorumski, CF et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003; 23: 876–82.CrossRefGoogle ScholarPubMed
50Ikonomidou, C, Bosch, F, Miksa, M, Bittigau, P, Vöckler, J, Dikranian, K et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283: 7074.CrossRefGoogle ScholarPubMed
51Ishimaru, MJ, Ikonomidou, C, Tenkova, TI, Der, TC, Dikranian, K, Sesma, MA et al. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 1999; 408: 461–76.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
52Kuan, CY, Roth, KA, Flavell, RA, Rakic, P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci 2000; 23: 291–97.CrossRefGoogle ScholarPubMed
53Anand, KJS, Soriano, SG. Anesthetic agents and the immature brain: are these toxic or therapeutic agents? Anesthesiology 2004; 101: 527–30.CrossRefGoogle ScholarPubMed
54Hayashi, H, Dikkes, P, Soriano, SG. Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Paediatr Anaesth 2002; 12: 770–74.CrossRefGoogle ScholarPubMed
55Ruda, MA, Ling, QD, Hohmann, AG, Peng, YB, Tachibana, T. Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 2000; 289: 628–31.CrossRefGoogle ScholarPubMed
56McClain, RJ, Uemura, K, de la Fuente, SG, Manson, RJ, Booth, JV, White, WD et al. General anaesthesia improves fetal cerebral oxygenation without evidence of subsequent neuronal injury. J Cerebr Blood Flow Metabol 2005; 25: 10601069.CrossRefGoogle Scholar
57de buck, F, Deprest, J, Van de Velde, M. Anesthesia for fetal surgery. Curr Opin Anaesthesiol 2008; 21: 293–97.CrossRefGoogle ScholarPubMed