Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T15:29:59.192Z Has data issue: false hasContentIssue false

CHROMOSOMAL MICROARRAYS: THE BENEFITS AND CHALLENGES OF INTRODUCTION INTO PRENATAL DIAGNOSIS

Published online by Cambridge University Press:  02 December 2010

LISA G SHAFFER
Affiliation:
Signature Genomic Laboratories, Spokane, WA, USA
DAVID CHITAYAT*
Affiliation:
The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
*
David Chitayat, Department of Obstetrics and Gynecology, Mount Sinai Hospital, The Ontario Power Generation Building, 700 University Avenue, Room 3292, M5G 1Z5, Toronto, Ontario, Canada. E-mail: [email protected]

Extract

Invasive prenatal testing, amniocentesis and chorionic villus sampling, has been used for over four decades to identify fetal genetic disorders. The most common test after obtaining fetal tissues is chromosome analysis, performed for a variety of medical indications including abnormal ultrasound findings, advanced maternal age and an abnormal screen for Down syndrome. About 2% of pregnancies in women over the age of 35 will show a chromosome abnormality, with trisomy 21 being the most common. In addition to Down syndrome, the most commonly observed trisomies are those of chromosomes 13 and 18. Numerical abnormalities of the sex chromosomes are also relatively common, as well as triploidy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bejjani, BA, Saleki, R, Ballif, BC, Rorem, EA, Sundin, K, Theisen, A et al. Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: Is less more? Am J Med Genet A 2005; 134: 259–67.CrossRefGoogle ScholarPubMed
2 Miller, DT, Adam, MP, Aradhya, S, Biesecker, LG, Brothman, AR, Carter, NP et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86: 749–64.CrossRefGoogle ScholarPubMed
3 Le Caignec, C, Boceno, M, Saugier-Veber, P, Jacquemont, S, Joubert, M, David, A et al. Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet 2005; 42: 121–28.CrossRefGoogle ScholarPubMed
4 Rickman, L, Fiegler, H, Shaw-Smith, C, Nash, R, Cirigliano, V, Voglino, G et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet 2006; 43: 353–61.CrossRefGoogle ScholarPubMed
5 Vialard, F, Molina Gomes, D, Leroy, B, Quarello, E, Escalona, A, Le Sciellour, C et al. Array comparative genomic hybridization in prenatal diagnosis: another experience. Fetal Diagn Ther 2009; 25: 277–84.CrossRefGoogle ScholarPubMed
6 Valduga, M, Philippe, C, Bach Segura, P, Thiebaugeorges, O, Miton, A, Beri, M et al. A retrospective study by oligonucleotide array-CGH analysis in 50 fetuses with multiple malformations. Prenat Diagn 30: 333–41.CrossRefGoogle Scholar
7 Deshpande, M, Harper, J, Holloway, M, Palmer, R, Wang, R. Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification. Genet Test Mol Biomarkers 14: 421–24.CrossRefGoogle Scholar
8 Faas, BH, Van Der Burgt, I, Kooper, AJ, Pfundt, R, Hehir-Kwa, JY, Smits, AP et al. Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250k SNP array analysis. J Med Genet 47: 586–94.CrossRefGoogle Scholar
9 Sahoo, T, Cheung, SW, Ward, P, Darilek, S, Patel, A, del Gaudio, D et al. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization. Genet Med 2006; 8: 719–27.CrossRefGoogle ScholarPubMed
10 Shaffer, LG, Coppinger, J, Alliman, S, Torchia, BA, Theisen, A, Ballif, BC et al. Comparison of microarray-based detection rates for cytogenetic abnormalities in prenatal and neonatal specimens. Prenat Diagn 2008; 28: 789–95.CrossRefGoogle ScholarPubMed
11 Van Den Veyver, IB, Patel, A, Shaw, CA, Pursley, AN, Kang, SH, Simovich, MJ et al. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn 2009; 29: 2939.CrossRefGoogle ScholarPubMed
12 Coppinger, J, Alliman, S, Lamb, AN, Torchia, BS, Bejjani, BA, Shaffer, LG. Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray. Prenat Diagn 2009; 29: 1156–66.CrossRefGoogle ScholarPubMed
13 Kleeman, L, Bianchi, D, Shaffer, LG, Rorem, E, Cowan, J, Craigo, SD et al. Use of array comparative genomic hybridization for prenatal diagnosis of fetuses with sonographic anomalies and normal metaphase karyotype. Prenat Diagn 2009; 29: 1213–217CrossRefGoogle ScholarPubMed
14 Tyreman, M, Abbott, KM, Willatt, LR, Nash, R, Lees, C, Whittaker, J et al. High resolution array analysis: diagnosing pregnancies with abnormal ultrasound findings. J Med Genet 2009; 46: 531–41.CrossRefGoogle ScholarPubMed
15ACOG Committee Opinion No. 446: Array Comparative Genomic Hybridization in Prenatal Diagnosis. Obstet Gynecol 2009; 114: 1161–163.CrossRefGoogle Scholar
16 Sharp, AJ. Emerging themes and new challenges in defining the role of structural variation in human disease. Hum Mutat 2009; 30: 135–44.CrossRefGoogle ScholarPubMed
17 Brunetti-Pierri, N, Berg, JS, Scaglia, F, Belmont, J, Bacino, CA, Sahoo, T et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 2008; 40: 1466–471.CrossRefGoogle ScholarPubMed
18 Mefford, HC, Sharp, AJ, Baker, C, Itsara, A, Jiang, Z, Buysse, K et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008; 359: 1685–699.CrossRefGoogle ScholarPubMed
19 Eichler, EE, Zimmerman, AW. A hot spot of genetic instability in autism. N Engl J Med 2008; 358: 737–39.CrossRefGoogle ScholarPubMed
20 Kumar, RA, KaraMohamed, S, Sudi, J, Conrad, DF, Brune, C, Badner, JA et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 2008; 17: 628–38.CrossRefGoogle ScholarPubMed
21 Rosenfeld, JA, Coppinger, J, Bejjani, BA, Girirajan, S, Eichler, EE, Shaffer, LG et al. Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications. J Neurodev Disord 2010; 2: 2638.CrossRefGoogle ScholarPubMed
22 Weiss, LA, Shen, Y, Korn, JM, Arking, DE, Miller, DT, Fossdal, R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–75.CrossRefGoogle ScholarPubMed
23 Rauch, A, Hoyer, J, Guth, S, Zweier, C, Kraus, C, Becker, C et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet 2006; 140: 20632074.CrossRefGoogle ScholarPubMed
24 de Vries, BB, Pfundt, R, Leisink, M, Koolen, DA, Vissers, LE, Janssen, IM et al. Diagnostic genome profiling in mental retardation. Am J Hum Genet 2005; 77: 606–16.CrossRefGoogle ScholarPubMed
25 Schoumans, J, Ruivenkamp, C, Holmberg, E, Kyllerman, M, Anderlid, BM, Nordenskjold, M. Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). J Med Genet 2005; 42: 699705.CrossRefGoogle ScholarPubMed
26 Krepischi-Santos, AC, Vianna-Morgante, AM, Jehee, FS, Passos-Bueno, MR, Knijnenburg, J, Szuhai, K et al. Whole-genome array-CGH screening in undiagnosed syndromic patients: old syndromes revisited and new alterations. Cytogenet Genome Res 2006; 115: 254–61.CrossRefGoogle ScholarPubMed
27 Menten, B, Maas, N, Thienpont, B, Buysse, K, Vandesompele, J, Melotte, C et al. Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. J Med Genet 2006; 43: 625–33.CrossRefGoogle ScholarPubMed
28 Pickering, DL, Eudy, JD, Olney, AH, Dave, BJ, Golden, D, Stevens, J et al. Array-based comparative genomic hybridization analysis of 1176 consecutive clinical genetics investigations. Genet Med 2008; 10: 262–66.CrossRefGoogle ScholarPubMed
29 Gruchy, N, Lebrun, M, Herlicoviez, M, Alliet, J, Gourdier, D, Kottler, ML et al. Supernumerary marker chromosomes management in prenatal diagnosis. Am J Med Genet 2008; 146A: 2770–776.CrossRefGoogle ScholarPubMed
30 Hahnemann, JM, Vejerslev, LO. Accuracy of cytogenetic findings on chorionic villus sampling (CVS)–diagnostic consequences of CVS mosaicism and non-mosaic discrepancy in centres contributing to EUCROMIC 1986–1992. Prenat Diagn 1997; 17: 801–20.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
31 Bi, W, Breman, AM, Venable, SF, Eng, PA, Sahoo, T, Lu, XY et al. Rapid prenatal diagnosis using uncultured amniocytes and oligonucleotide array CGH. Prenat Diagn 2008; 28: 943–49.CrossRefGoogle ScholarPubMed
32 Chen, KS, Manian, P, Koeuth, T, Potocki, L, Zhao, Q, Chinault, AC et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 1997; 17: 154–63.CrossRefGoogle ScholarPubMed
33 Potocki, L, Chen, KS, Park, SS, Osterholm, DE, Withers, MA, Kimonis, V et al. Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat Genet 2000; 24: 8487.CrossRefGoogle ScholarPubMed
34 Berg, JS, Potocki, L, Bacino, CA. Common recurrent microduplication syndromes: diagnosis and management in clinical practice. Am J Med Genet A 2010; 152A: 10661078.CrossRefGoogle ScholarPubMed
35 Alberti, A, Romano, C, Falco, M, Cali, F, Schinocca, P, Galesi, O et al. 1.5 Mb de novo 22q11.21 microduplication in a patient with cognitive deficits and dysmorphic facial features. Clin Genet 2007; 71: 177–82.CrossRefGoogle Scholar
36 de La Rochebrochard, C, Joly-Helas, G, Goldenberg, A, Durand, I, Laquerriere, A, Ickowicz, V et al. The intrafamilial variability of the 22q11.2 microduplication encompasses a spectrum from minor cognitive deficits to severe congenital anomalies. Am J Med Genet 2006; 140: 1608–613.CrossRefGoogle ScholarPubMed
37 Ou, Z, Berg, JS, Yonath, H, Enciso, VB, Miller, DT, Picker, J et al. Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med 2008; 10: 267–77.CrossRefGoogle ScholarPubMed
38 Hannes, FD, Sharp, AJ, Mefford, HC, De Ravel, T, Ruivenkamp, CA, Breuning, MH et al. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet 2009; 46: 223–32.CrossRefGoogle ScholarPubMed
39 Heinzen, EL, Radtke, RA, Urban, TJ, Cavalleri, GL, Depondt, C, Need, AC et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet 2010; 86: 707–18.CrossRefGoogle ScholarPubMed
40 Hillman, SC, Pretlove, S, Coomarasamy, A, McMullan, DJ, Davison, EV, Maher, ER, et al. Ultrasound Obstet Gynecol 2010 Jul 23. [Epub ahead of print].Google Scholar
41 Vissers, LE, van Ravenswaaij, CM, Admiraal, R, Hurst, JA, de Vries, BB, Janssen, IM et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004; 36: 955–57.CrossRefGoogle Scholar
42 Milunsky, JM, Maher, TA, Zhao, G, Roberts, AE, Stalker, HJ, Zori, RT et al. TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum Genet 2008; 82: 1171–177.CrossRefGoogle ScholarPubMed
43 Wang, X, Reid Sutton, V, Omar Peraza-Llanes, J, Yu, Z, Rosetta, R, Kou, YC et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet 2007; 39: 836–38.CrossRefGoogle ScholarPubMed