Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T15:33:56.840Z Has data issue: false hasContentIssue false

THE APPLICATION OF MICROARRAY BASED COMPARATIVE GENOMIC HYBRIDIZATION IN PRENATAL DIAGNOSIS

Published online by Cambridge University Press:  01 May 2008

KWONG WAI CHOY*
Affiliation:
Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Prince of Wales Hospital and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
PO TING TSANG
Affiliation:
Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Prince of Wales Hospital and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
TAK YEUNG LEUNG
Affiliation:
Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Prince of Wales Hospital and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
CHI CHIU WANG
Affiliation:
Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Prince of Wales Hospital and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
TZE KIN LAU
Affiliation:
Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Prince of Wales Hospital and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
*
Dr. Kwong Wai Choy, Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR

Extract

Microscopic forms of karyotyping and cytogenetic analysis by means of G-banded chromosome analysis and rapid FISH (fluorescence in situ hybridization) on amniotic fluids or chorionic villus samples are at present regarded as the gold standard for prenatal diagnosis of chromosomal anomalies. Nevertheless, up to now the resolution of conventional chromosomal analysis was limited to approximately 4–5 Mb and not smaller than 2 Mb for FISH. Thus numerous common microdeletion syndromes are not detectable by conventional karyotyping. In addition, prenatal cells yield lower band resolution by conventional karyotyping than peripheral white blood cells making detection of subtle abnormalities even more difficult. With the advances in molecular-based techniques, a collaborative effort has led to the standardized method for detection of a restricted set of common chromosomal aneuploidies and microdeletion syndromes such as Down's syndrome, DiGeorge or Angelman syndrome either by rapid FISH and/or quantitative fluorescent PCR (QF-PCR). Even if the presence of particular phenotypic features of microdeletion or duplication syndromes may direct the use of syndrome-specific FISH tests in the postnatal period, syndrome-specific FISH analysis still has a very limited potential and application in the prenatal period due to the limitation in prenatal morphological or imaging diagnosis of many of the syndromes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tepperberg, J, Pettenati, MJ, Rao, PN, Lese, CM, Rita, D, Wyandt, H et al. Prenatal diagnosis using interphase fluorescence in situ hybridization (FISH): 2-year multi-center retrospective study and review of the literature. Prenat Diagn 2001; 21: 293301.CrossRefGoogle ScholarPubMed
2Leung, WC WJ, Chitty, L.Prenatal diagnosis by rapid aneuploidy detection and karyotyping: a prospective study of the role of ultrasound in 1589 second-trimester amniocenteses. Prenat Diagn 2004; 24: 790–95.CrossRefGoogle ScholarPubMed
3Evans, MI, Henry, GP, Miller, WA, Bui, TH, Snidjers, RJ, Wapner, RJ et al. International, collaborative assessment of 146,000 prenatal karyotypes: expected limitations if only chromosome-specific probes and fluorescent in-situ hybridization are used. Hum Reprod 1999; 14: 1213–216.CrossRefGoogle ScholarPubMed
4Ward, BE, Gersen, SL, Carelli, MP, McGuire, NM, Dackowski, WR, Weinstein, M et al. Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization: clinical experience with 4500 specimens. Am J Hum Genet 1993; 52: 854–65.Google Scholar
5Johansson, B, Arheden, K, Höglund, M, Othzén, A, Békássy, AN, Turesson, I et al. Fluorescence in situ hybridization analysis of whole-arm 7;12 translocations in hematologic malignancies. Genes Chromosomes Cancer. 1995; 14: 5662.CrossRefGoogle Scholar
6Klinger, K, Landes, G, Shook, D, Harvey, R, Lopez, L, Locke, P et al. Rapid detection of chromosome aneuploidies in uncultured amniocytes by using fluorescence in situ hybridization (FISH). Am J Hum Genet 1992; 51: 5565.Google ScholarPubMed
7Mann, K, Donaghue, C, Fox, SP, Docherty, Z, Ogilvie, CM.Strategies for the rapid prenatal diagnosis of chromosome aneuploidy. Eur J Hum Genet 2004; 12: 907–15.CrossRefGoogle ScholarPubMed
8Hulten, MA DS, Pertl, B. Rapid and simple prenatal diagnosis of common chromosome disorders: advantages and disadvantages of the molecular methods FISH and QF-PCR. Reproduction 2003; 126: 279–97.CrossRefGoogle ScholarPubMed
9Divane, A, Carter, NP, Spathas, DH, Ferguson-Smith, MA. Rapid prenatal diagnosis of aneuploidy from uncultured amniotic fluid cells using five-colour fluorescence in situ hybridization. Prenat Diagn 1994; 14: 1061–69.CrossRefGoogle ScholarPubMed
10Timor-Tritsch, IE, Platt, LD. Three-dimensional ultrasound experience in obstetrics. Curr Opin Obstet Gynecol 2002; 14: 569–75.CrossRefGoogle ScholarPubMed
11Sandrasegaran, K, Lall, C, Aisen, AA, Rajesh, A, Cohen, MD. Fast fetal magnetic resonance imaging. J Comput Assist Tomogr 2005; 29: 487–98.CrossRefGoogle ScholarPubMed
12Kallioniemi, A, Kallioniemi, OP, Sudar, D, Rutovitz, D, Gray, JW, Waldman, F et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–21.CrossRefGoogle ScholarPubMed
13Pinkel, D, Segraves, R, Sudar, D, Clark, S, Poole, I, Kowbel, D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207–11.CrossRefGoogle ScholarPubMed
14Albertson, DG, Pinkel, D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 2003; 12: R14552.CrossRefGoogle ScholarPubMed
15Pinkel, D, Albertson, DG. Array comparative genomic hybridization and its applications in cancer. Nat Genet 2005; 37: 511–7.CrossRefGoogle ScholarPubMed
16Ishkanian, AS, Malloff, CA, Watson, SK, DeLeeuw, RJ, Chi, B, Coe, BP et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004; 36: 299303.CrossRefGoogle ScholarPubMed
17Coe, BP, Ylstra, B, Carvalho, B, Meijer, GA, Macaulay, C, Lam, WL. Resolving the resolution of array CGH. Genomics 2007; 89: 647–53.CrossRefGoogle ScholarPubMed
18Greshock, J, Naylor, TL, Margolin, A, Diskin, S, Cleaver, SH, Futreal, PA et al. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res 2004; 14: 179–87.CrossRefGoogle ScholarPubMed
19Vissers, LE, de Vries, BB, Osoegawa, K, Janssen, IM, Feuth, T, Choy, CO et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 2003; 73: 1261–270.CrossRefGoogle ScholarPubMed
20Shaw-Smith, C, Redon, R, Rickman, L, Rio, M, Willatt, L, Fiegler, H et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 2004; 41: 241–48.CrossRefGoogle ScholarPubMed
21Lu, X, Shaw, CA, Patel, A, Li, J, Cooper, ML, Wells, WR et al. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS ONE. 2007; 28;2: e327. http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000327CrossRefGoogle Scholar
22Thorgeirsson, SS, Lee, JS, Grisham, JW. Functional genomics of hepatocellular carcinoma. Hepatology 2006; 43: S14550.CrossRefGoogle ScholarPubMed
23de Vries, BB, Pfundt, R, Leisink, M, Koolen, DA, Vissers, LE, Janssen, IM et al. Diagnostic genome profiling in mental retardation. Am J Hum Genet 2005; 77: 606–16.CrossRefGoogle ScholarPubMed
24Stankiewicz, P, Beaudet, AL. Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 2007; 17: 182–92.CrossRefGoogle ScholarPubMed
25Ullmann, R, Turner, G, Kirchhoff, M, Chen, W, Tonge, B, Rosenberg, C et al. Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Human Mutation 2007; 28: 674–82.CrossRefGoogle ScholarPubMed
26Sahoo, T, Cheung, SW, Ward, P, Darilek, S, Patel, A, del Gaudio, D et al. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization. Genet Med 2006; 8: 719–27.CrossRefGoogle ScholarPubMed
27Rickman, L, Fiegler, H, Carter, NP, Bobrow, M. Prenatal diagnosis by array-CGH. Eur J Med Genet 2005; 48: 232–40.CrossRefGoogle ScholarPubMed
28Rickman, L, Fiegler, H, Shaw-Smith, C, Nash, R, Cirigliano, V, Voglino, G et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet 2006; 43: 353–61.CrossRefGoogle ScholarPubMed
29Schaeffer, AJ, Chung, J, Heretis, K, Wong, A, Ledbetter, DH, Lese Martin, C. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet 2004; 74: 1168–174.CrossRefGoogle ScholarPubMed
30Brisset, S, Kasakyan, S, L'Herminé, AC, Mairovitz, V, Gautier, E, Aubry, MC et al. De novo monosomy 9p24.3-pter and trisomy 17q24.3-qter characterised by microarray comparative genomic hybridisation in a fetus with an increased nuchal translucency. Prenat Diagn 2006; 26: 206–13.CrossRefGoogle Scholar
31Ballif, BC, Rorem, EA, Sundin, K, Lincicum, M, Gaskin, S, Coppinger, J et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A 2006; 140: 2757–767.CrossRefGoogle ScholarPubMed
32Wood, E, Dowey, S, Saul, D, Cain, C, Rossiter, J, Blakemore, K, Stetten, G. Prenatal diagnosis of mosaic trisomy 8q studied by ultrasound, cytogenetics, and array-CGH. Am J Med Genet A 2008; 146: 764–69.CrossRefGoogle Scholar
33Cheung, SW, Shaw, CA, Scott, DA, Patel, A, Sahoo, T, Bacino, CA et al. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet 2007; 143A: 1679–686.CrossRefGoogle Scholar
34Menten, B, Maas, N, Thienpont, B, Buysse, K, Vandesompele, J, Melotte, C et al. Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. J Med Genet 2006; 43: 625–33.CrossRefGoogle ScholarPubMed
35Le Caignec, C, Boceno, M, Saugier-Veber, P, Jacquemont, S, Joubert, M, David, A et al. Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet 2005; 42: 121–28.CrossRefGoogle ScholarPubMed
36Goumy, C, Beaufrère, AM, Francannet, C, Tchirkov, A, Laurichesse Delmas, H, Geissler, F et al. Prenatal detection of mosaic isochromosome 20q: a fourth report with abnormal phenotype. Prenat Diagn 2005; 25: 653–55.CrossRefGoogle ScholarPubMed
37Cross, J, Peters, G, Wu, Z, Brohede, J, Hannan, GN. Resolution of trisomic mosaicism in prenatal diagnosis: estimated performance of a 50K SNP microarray. Prenat Diagn 2007; 27: 1197–204.CrossRefGoogle ScholarPubMed
38Carter, NP. As normal as normal can be? Nat Genet 2004; 36: 931–32.CrossRefGoogle ScholarPubMed
39Guillaud-Bataille, M, Valent, A, Soularue, P, Perot, C, Inda, MM, Receveur, A, et al. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH. Nucleic Acids Res. 2004;32:e112.CrossRefGoogle ScholarPubMed
40Perry, GH, Ben-Dor, A, Tsalenko, A, Sampas, N, Rodriguez-Revenga, L, Tran, CW et al. The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet 2008; 82: 685–95.CrossRefGoogle ScholarPubMed
41Bejjani, BA, Saleki, R, Ballif, BC, Rorem, EA, Sundin, K, Theisen, A et al. Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 2005; 134: 259–67.CrossRefGoogle ScholarPubMed
42Shaffer, LG, Bejjani, BA. A cytogeneticist's perspective on genomic microarrays. Hum Reprod Update 2004; 10: 221–26.CrossRefGoogle ScholarPubMed
43Shaffer, LG, Bejjani, BA, Torchia, B, Kirkpatrick, S, Coppinger, J, Ballif, BC. The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet C Semin Med Genet 2007; 145: 335–45.CrossRefGoogle Scholar
44Iafrate, AJ, Feuk, L, Rivera, MN, Listewnik, ML, Donahoe, PK, Qi, Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–51.CrossRefGoogle ScholarPubMed
45Sebat, J, Lakshmi, B, Troge, J, Alexander, J, Young, J, Lundin, P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–28.CrossRefGoogle ScholarPubMed
46Tuzun, E, Sharp, AJ, Bailey, JA, Kaul, R, Morrison, VA, Pertz, LM et al. Fine-scale structural variation of the human genome. Nat Genet 2005; 37: 727–32.CrossRefGoogle ScholarPubMed
47Conrad, DF, Andrews, TD, Carter, NP, Hurles, ME, Pritchard, JK. A high resolution survey of deletion polymorphism in the human genome. Nat Genet 2005; 38: 7581.CrossRefGoogle ScholarPubMed
48McCarroll, SA, Hadnott, TN, Perry, GH, Sabeti, PC, Zody, MC, Barrett, J et al. Common deletion variants in the human genome. Nat Genet 2006 38: 86–92.CrossRefGoogle ScholarPubMed
49McCarroll, SA, Altshuler, DM. Copy-number variation and association studies of human disease. Nat Genet 2007; 39: S3742.CrossRefGoogle ScholarPubMed
50Jakobsson, M, Scholz, SW, Scheet, P, Gibbs, JR, VanLiere, JM, et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 2008; 451: 9981003.CrossRefGoogle ScholarPubMed
51Larrabee, PB, Johnson, KL, Pestova, E, Lucas, M, Wilber, K, LeShane, ES et al. Microarray analysis of cell-free fetal DNA in amniotic fluid: a prenatal molecular karyotype. Am J Hum Genet 2004; 75: 485–91.CrossRefGoogle ScholarPubMed
52Hu, DG, Webb, G, Hussey, N. Aneuploidy detection in single cells using DNA array-based comparative genomic hybridization. Mol Hum Reprod 2004; 10: 283–89.CrossRefGoogle ScholarPubMed
53Devries, S, Nyante, S, Korkola, J, Segraves, R, Nakao, K, Moore, D et al. Array-based comparative genomic hybridization from formalin-fixed, paraffin-embedded breast tumors. J Mol Diagn 2005; 7: 6571.CrossRefGoogle ScholarPubMed
54Little, SE, Vuononvirta, R, Reis-Filho, JS, Natrajan, R, Iravani, M, Fenwick, K et al. Array CGH using whole genome amplification of fresh-frozen and formalin-fixed, paraffin-embedded tumor DNA. Genomics 2006; 87: 298306.CrossRefGoogle ScholarPubMed
55Redon, R, Ishikawa, S, Fitch, KR, Feuk, L, Perry, GH, Andrews, TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–54.CrossRefGoogle ScholarPubMed
56Fiegler, H, Carter, NP. Genomic array technology. Methods Cell Biol 2004; 75: 769–85.CrossRefGoogle ScholarPubMed
57Lupski, JR. Genome structural variation and sporadic disease traits. Nat Genet 2006; 38: 974–76.CrossRefGoogle ScholarPubMed
58Lupski, JR, Beaudet, AL, Sutton, VR. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A 2007; 143: 1679–686.Google Scholar
59Feuk, L, Carson, AR, Scherer, SW. Structural variation in the human genome. Nat Rev Genet 2006; 7: 8597.CrossRefGoogle ScholarPubMed
60Freeman, JL, Perry, GH, Feuk, L, Redon, R, McCarroll, SA, Altshuler, DM et al. Copy number variation: New insights into genome diversity. Genome Res 2006; 16: 949–61.CrossRefGoogle ScholarPubMed
61Perry, GH, Tchinda, J, McGrath, SD, Zhang, J, Picker, SR, Caceres, AM et al. Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA 2006; 103: 8006–11.CrossRefGoogle ScholarPubMed
62Davidsson, J, Andersson, A, Paulsson, K, Heidenblad, M, Isaksson, M, Borg, A et al. Tiling resolution array CGH, expression, and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22–32.3. Hum Mol Genet 2007; 16: 2215–225.CrossRefGoogle Scholar
63Perry, GH, Dominy, NJ, Claw, KG, Lee, AS, Fiegler, H, Redon, R et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet 2007; 39: 1256–260.CrossRefGoogle ScholarPubMed